Coherent functors and covariantly finite subcategories

Krause H (2003)
Algebras and Representation Theory 6(5): 475-499.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Given a locally presentable additive category A, we study a class of covariantly finite subcategories which we call definable. A definable subcategory arises from a set of coherent functors F-i onA by taking all objects X in A such that FiX = 0 for all i. We give various characterizations of definable subcategories, demonstrating that all covariantly finite subcategories which arise in practice are of this form. This is based on a filtration of the category of all coherent functors on A.
Erscheinungsjahr
Zeitschriftentitel
Algebras and Representation Theory
Band
6
Ausgabe
5
Seite(n)
475-499
ISSN
PUB-ID

Zitieren

Krause H. Coherent functors and covariantly finite subcategories. Algebras and Representation Theory. 2003;6(5):475-499.
Krause, H. (2003). Coherent functors and covariantly finite subcategories. Algebras and Representation Theory, 6(5), 475-499. doi:10.1023/B:ALGE.0000006492.02381.df
Krause, H. (2003). Coherent functors and covariantly finite subcategories. Algebras and Representation Theory 6, 475-499.
Krause, H., 2003. Coherent functors and covariantly finite subcategories. Algebras and Representation Theory, 6(5), p 475-499.
H. Krause, “Coherent functors and covariantly finite subcategories”, Algebras and Representation Theory, vol. 6, 2003, pp. 475-499.
Krause, H.: Coherent functors and covariantly finite subcategories. Algebras and Representation Theory. 6, 475-499 (2003).
Krause, Henning. “Coherent functors and covariantly finite subcategories”. Algebras and Representation Theory 6.5 (2003): 475-499.