Stability for quadratic K-1

Bak A, Petrov V, Tang G (2003)
K-Theory 30(1): 1-11.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ;
Abstract / Bemerkung
The general quadratic group GQ(2n) and its elementary subgroup EQ(2n) are analogs in the theory of quadratic forms of the general linear group GL(n) and its elementary subgroup E-n. This article proves that the stabilization map GQ(2n)/EQ(2n) --> GQ(2(n+1))/EQ(2(n+1)) is an isomorphism whenever n greater than or equal to LambdaS + 1 and LambdaS denotes the Lambda-stable rank of rings with anti-involution. As a corollary, a result is obtained which has been anticipated since the late 1960s: over rings of finite Bass-Serre dimension d, the stabilization map is an isomorphism whenever n greater than or equal to d + 2.
Erscheinungsjahr
Zeitschriftentitel
K-Theory
Band
30
Ausgabe
1
Seite(n)
1-11
ISSN
PUB-ID

Zitieren

Bak A, Petrov V, Tang G. Stability for quadratic K-1. K-Theory. 2003;30(1):1-11.
Bak, A., Petrov, V., & Tang, G. (2003). Stability for quadratic K-1. K-Theory, 30(1), 1-11. doi:10.1023/B:KTHE.0000015340.00470.a9
Bak, A., Petrov, V., and Tang, G. (2003). Stability for quadratic K-1. K-Theory 30, 1-11.
Bak, A., Petrov, V., & Tang, G., 2003. Stability for quadratic K-1. K-Theory, 30(1), p 1-11.
A. Bak, V. Petrov, and G. Tang, “Stability for quadratic K-1”, K-Theory, vol. 30, 2003, pp. 1-11.
Bak, A., Petrov, V., Tang, G.: Stability for quadratic K-1. K-Theory. 30, 1-11 (2003).
Bak, Anthony, Petrov, Victor, and Tang, Guoping. “Stability for quadratic K-1”. K-Theory 30.1 (2003): 1-11.