Euclidean Gibbs measures on loop lattices: Existence and a priori estimates

Albeverio S, Kondratiev Y, Pasurek T, Röckner M (2004)
ANNALS OF PROBABILITY 32(1A): 153-190.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
We present a new method to prove existence and uniform a priori estimates for Euclidean Gibbs measures corresponding to quantum anharmonic crystals. It is based first on the alternative characterization of Gibbs measures in terms of their logarithmic derivatives through integration by parts formulas, and second on the choice of appropriate Lyapunov functionals.
Erscheinungsjahr
Zeitschriftentitel
ANNALS OF PROBABILITY
Band
32
Ausgabe
1A
Seite(n)
153-190
ISSN
PUB-ID

Zitieren

Albeverio S, Kondratiev Y, Pasurek T, Röckner M. Euclidean Gibbs measures on loop lattices: Existence and a priori estimates. ANNALS OF PROBABILITY. 2004;32(1A):153-190.
Albeverio, S., Kondratiev, Y., Pasurek, T., & Röckner, M. (2004). Euclidean Gibbs measures on loop lattices: Existence and a priori estimates. ANNALS OF PROBABILITY, 32(1A), 153-190.
Albeverio, S., Kondratiev, Y., Pasurek, T., and Röckner, M. (2004). Euclidean Gibbs measures on loop lattices: Existence and a priori estimates. ANNALS OF PROBABILITY 32, 153-190.
Albeverio, S., et al., 2004. Euclidean Gibbs measures on loop lattices: Existence and a priori estimates. ANNALS OF PROBABILITY, 32(1A), p 153-190.
S. Albeverio, et al., “Euclidean Gibbs measures on loop lattices: Existence and a priori estimates”, ANNALS OF PROBABILITY, vol. 32, 2004, pp. 153-190.
Albeverio, S., Kondratiev, Y., Pasurek, T., Röckner, M.: Euclidean Gibbs measures on loop lattices: Existence and a priori estimates. ANNALS OF PROBABILITY. 32, 153-190 (2004).
Albeverio, Sergio, Kondratiev, Yuri, Pasurek, Tatiana, and Röckner, Michael. “Euclidean Gibbs measures on loop lattices: Existence and a priori estimates”. ANNALS OF PROBABILITY 32.1A (2004): 153-190.