Higher order logarithmic derivatives of matrices in the spectral norm

Bhatia R, Elsner L (2003)
SIAM Journal on Matrix Analysis and Applications 25(3): 662-668.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
For the spectral norm ||.|| on n x n complex matrices, we derive the first three right-hand derivatives of phi(t) = ||e(tA)|| at t = 0. The first one is the well-known logarithmic derivative. This study was inspired by a recent result by Kohaupt, where the second derivative is studied for the l(p) norms, p = 1,infinity.
Erscheinungsjahr
Zeitschriftentitel
SIAM Journal on Matrix Analysis and Applications
Band
25
Ausgabe
3
Seite(n)
662-668
ISSN
PUB-ID

Zitieren

Bhatia R, Elsner L. Higher order logarithmic derivatives of matrices in the spectral norm. SIAM Journal on Matrix Analysis and Applications. 2003;25(3):662-668.
Bhatia, R., & Elsner, L. (2003). Higher order logarithmic derivatives of matrices in the spectral norm. SIAM Journal on Matrix Analysis and Applications, 25(3), 662-668. doi:10.1137/S0895479802413662
Bhatia, R., and Elsner, L. (2003). Higher order logarithmic derivatives of matrices in the spectral norm. SIAM Journal on Matrix Analysis and Applications 25, 662-668.
Bhatia, R., & Elsner, L., 2003. Higher order logarithmic derivatives of matrices in the spectral norm. SIAM Journal on Matrix Analysis and Applications, 25(3), p 662-668.
R. Bhatia and L. Elsner, “Higher order logarithmic derivatives of matrices in the spectral norm”, SIAM Journal on Matrix Analysis and Applications, vol. 25, 2003, pp. 662-668.
Bhatia, R., Elsner, L.: Higher order logarithmic derivatives of matrices in the spectral norm. SIAM Journal on Matrix Analysis and Applications. 25, 662-668 (2003).
Bhatia, Rajendra, and Elsner, Ludwig. “Higher order logarithmic derivatives of matrices in the spectral norm”. SIAM Journal on Matrix Analysis and Applications 25.3 (2003): 662-668.