PNIPAM-co-polystyrene core-shell microgels: Structure, swelling behavior, and crystallization

Hellweg T, Dewhurst CD, Eimer W, Kratz K (2004)
LANGMUIR 20(11): 4330-4335.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Hellweg, ThomasUniBi ; Dewhurst, CD; Eimer, W; Kratz, K
Abstract / Bemerkung
The present contribution presents the single-step preparation and characterization of poly(N-isopropyl acrylamide)-co-polystyrene core-shell microgels with varying polystyrene content. The swelling behavior of the particles is investigated using dynamic light scattering and differs significantly from the swelling behavior of poly(N-isopropyl acrylamide) homopolymer particles. The lower critical solution temperature is found to be shifted to lower temperatures upon increasing the polystyrene content of the particles. The core-shell structure of the particles is revealed by means of small angle neutron scattering (SANS) using the method of contrast variation. Additionally, the formation of mesoscopic crystals of these particles is investigated by means of scanning electron microscopy and also by SANS. The particles seem to have preferable properties with respect to crystallization compared to homopolymer microgels.
Page URI


Hellweg T, Dewhurst CD, Eimer W, Kratz K. PNIPAM-co-polystyrene core-shell microgels: Structure, swelling behavior, and crystallization. LANGMUIR. 2004;20(11):4330-4335.
Hellweg, T., Dewhurst, C. D., Eimer, W., & Kratz, K. (2004). PNIPAM-co-polystyrene core-shell microgels: Structure, swelling behavior, and crystallization. LANGMUIR, 20(11), 4330-4335.
Hellweg, T., Dewhurst, C. D., Eimer, W., and Kratz, K. (2004). PNIPAM-co-polystyrene core-shell microgels: Structure, swelling behavior, and crystallization. LANGMUIR 20, 4330-4335.
Hellweg, T., et al., 2004. PNIPAM-co-polystyrene core-shell microgels: Structure, swelling behavior, and crystallization. LANGMUIR, 20(11), p 4330-4335.
T. Hellweg, et al., “PNIPAM-co-polystyrene core-shell microgels: Structure, swelling behavior, and crystallization”, LANGMUIR, vol. 20, 2004, pp. 4330-4335.
Hellweg, T., Dewhurst, C.D., Eimer, W., Kratz, K.: PNIPAM-co-polystyrene core-shell microgels: Structure, swelling behavior, and crystallization. LANGMUIR. 20, 4330-4335 (2004).
Hellweg, Thomas, Dewhurst, CD, Eimer, W, and Kratz, K. “PNIPAM-co-polystyrene core-shell microgels: Structure, swelling behavior, and crystallization”. LANGMUIR 20.11 (2004): 4330-4335.

28 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Core and surface microgel mechanics are differentially sensitive to alternative crosslinking concentrations.
Mohapatra H, Kruger TM, Lansakara TI, Tivanski AV, Stevens LL., Soft Matter 13(34), 2017
PMID: 28744535
Quantifying the Interactions in the Aggregation of Thermoresponsive Polymers: The Effect of Cononsolvency.
Kyriakos K, Philipp M, Lin CH, Dyakonova M, Vishnevetskaya N, Grillo I, Zaccone A, Miasnikova A, Laschewsky A, Müller-Buschbaum P, Papadakis CM., Macromol Rapid Commun 37(5), 2016
PMID: 26776153
Core-shell-shell and hollow double-shell microgels with advanced temperature responsiveness.
Dubbert J, Nothdurft K, Karg M, Richtering W., Macromol Rapid Commun 36(2), 2015
PMID: 25354836
In Situ Formation of Dual-Phase Thermosensitive Ultrasmall Gold Nanoparticles.
He Z, Zhong A, Zhang H, Xiong L, Xu Y, Wang T, Zhou M, Huang K., Chemistry 21(28), 2015
PMID: 26031407
Dual pH- and Temperature-Responsive Protein Nanoparticles.
Matsumoto NM, Buchman GW, Rome LH, Maynard HD., Eur Polym J 69(), 2015
PMID: 26365998
Local structure of temperature and pH-sensitive colloidal microgels.
Nigro V, Angelini R, Bertoldo M, Bruni F, Castelvetro V, Ricci MA, Rogers S, Ruzicka B., J Chem Phys 143(11), 2015
PMID: 26395735
Structure and polymer dynamics within PNIPAM-based microgel particles.
Sierra-Martin B, Rubio Retama J, Laurenti M, Fernández Barbero A, López Cabarcos E., Adv Colloid Interface Sci 205(), 2014
PMID: 24275613
Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials.
Schäfer CG, Lederle C, Zentel K, Stühn B, Gallei M., Macromol Rapid Commun 35(21), 2014
PMID: 25243892
Molecular versus macroscopic perspective on the demixing transition of aqueous PNIPAM solutions by studying the dual character of the refractive index.
Philipp M, Aleksandrova R, Müller U, Ostermeyer M, Sanctuary R, Müller-Buschbaum P, Krüger JK., Soft Matter 10(37), 2014
PMID: 25093432
Polymer micronetworks with shape-memory as future platform to explore shape-dependent biological effects.
Friess F, Nöchel U, Lendlein A, Wischke C., Adv Healthc Mater 3(12), 2014
PMID: 25295760
A lattice model for thermally-sensitive core-shell hydrogels.
Lian C, Zhi D, Xu S, Liu H, Hu Y., J Colloid Interface Sci 406(), 2013
PMID: 23827479
2D assembly of gold-PNIPAM core-shell nanocrystals.
Jaber S, Karg M, Morfa A, Mulvaney P., Phys Chem Chem Phys 13(13), 2011
PMID: 21347479
Task-specific, biodegradable amino acid ionic liquid surfactants.
Trivedi TJ, Rao KS, Singh T, Mandal SK, Sutradhar N, Panda AB, Kumar A., ChemSusChem 4(5), 2011
PMID: 21506287
Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles.
Laurent S, Dutz S, Häfeli UO, Mahmoudi M., Adv Colloid Interface Sci 166(1-2), 2011
PMID: 21601820
Real time monitoring of biomaterial-mediated inflammatory responses via macrophage-targeting NIR nanoprobes.
Zhou J, Tsai YT, Weng H, Baker DW, Tang L., Biomaterials 32(35), 2011
PMID: 21893338
Free Volume and Swelling in Thin Films of Poly(N-isopropylacrylamide) End-Capped with n-Butyltrithiocarbonate.
Harms S, Rätzke K, Faupel F, Egger W, Ravello L, Laschewsky A, Wang W, Müller-Buschbaum P., Macromol Rapid Commun 31(15), 2010
PMID: 21567537
Water Storage in Thin Films Maintaining the Total Film Thickness as Probed with in situ Neutron Reflectivity.
Wang W, Metwalli E, Perlich J, Troll K, Papadakis CM, Cubitt R, Müller-Buschbaum P., Macromol Rapid Commun 30(2), 2009
PMID: 21706585
Towards large-scale photonic crystals with tuneable bandgaps.
Hellweg T., Angew Chem Int Ed Engl 48(37), 2009
PMID: 19670282
Temperature-sensitive poly(N-isopropyl-acrylamide) microgel particles: a light scattering study.
Reufer M, Díaz-Leyva P, Lynch I, Scheffold F., Eur Phys J E Soft Matter 28(2), 2009
PMID: 19031089
Preparation and properties of cyclodextrin/PNIPAm microgels.
Liu YY, Yu Y, Tian W, Sun L, Fan XD., Macromol Biosci 9(5), 2009
PMID: 19107719
Centrifugal deposition of microgels for the rapid assembly of nonfouling thin films.
South AB, Whitmire RE, García AJ, Lyon LA., ACS Appl Mater Interfaces 1(12), 2009
PMID: 20356152
Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell.
Karg M, Wellert S, Pastoriza-Santos I, Lapp A, Liz-Marzán LM, Hellweg T., Phys Chem Chem Phys 10(44), 2008
PMID: 18989484
Thermosensitive copolymer networks modify gold nanoparticles for nanocomposite entrapment.
Li D, He Q, Cui Y, Wang K, Zhang X, Li J., Chemistry 13(8), 2007
PMID: 17154319
A versatile approach for the preparation of thermosensitive PNIPAM core-shell microgels with nanoparticle cores.
Karg M, Pastoriza-Santos I, Liz-Marzán LM, Hellweg T., Chemphyschem 7(11), 2006
PMID: 17013983
Effective electrostatic interactions in suspensions of polyelectrolyte brush-coated colloids.
Wang H, Denton AR., Phys Rev E Stat Nonlin Soft Matter Phys 70(4 pt 1), 2004
PMID: 15600405


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 15969135
PubMed | Europe PMC

Suchen in

Google Scholar