Max-algebra and pairwise comparison matrices

Elsner L, van den Driessche P (2004)
Linear Algebra and its Applications 385: 47-62.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
The max-eigenvector of a symmetrically reciprocal matrix A can be used to construct a transitive matrix that is closest to A in a relative error measure. As an alternative to the Perron eigenvector, the max-eigenvector can be used successfully for ranking in the analytical hierarchy process. When either one measurement is corrected or a new alternative is added, the max-eigenvector gives more consistent rankings. Some properties of the max-eigenvector that are important in this process are discussed, and an O (n(3)) procedure to calculate the max-eigenvector is detailed. (C) 2003 Elsevier Inc. All rights reserved.
Erscheinungsjahr
Zeitschriftentitel
Linear Algebra and its Applications
Band
385
Seite(n)
47-62
ISSN
PUB-ID

Zitieren

Elsner L, van den Driessche P. Max-algebra and pairwise comparison matrices. Linear Algebra and its Applications. 2004;385:47-62.
Elsner, L., & van den Driessche, P. (2004). Max-algebra and pairwise comparison matrices. Linear Algebra and its Applications, 385, 47-62. doi:10.1016/S0024-3795(03)00476-2
Elsner, L., and van den Driessche, P. (2004). Max-algebra and pairwise comparison matrices. Linear Algebra and its Applications 385, 47-62.
Elsner, L., & van den Driessche, P., 2004. Max-algebra and pairwise comparison matrices. Linear Algebra and its Applications, 385, p 47-62.
L. Elsner and P. van den Driessche, “Max-algebra and pairwise comparison matrices”, Linear Algebra and its Applications, vol. 385, 2004, pp. 47-62.
Elsner, L., van den Driessche, P.: Max-algebra and pairwise comparison matrices. Linear Algebra and its Applications. 385, 47-62 (2004).
Elsner, Ludwig, and van den Driessche, Pauline. “Max-algebra and pairwise comparison matrices”. Linear Algebra and its Applications 385 (2004): 47-62.