Modeling microarray data using a threshold mixture model
Kauermann G, Eilers P (2004)
BIOMETRICS 60(2): 376-387.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kauermann, GöranUniBi;
Eilers, P
Einrichtung
Abstract / Bemerkung
An important goal of microarray studies is the detection of genes that show significant changes in expression when two classes of biological samples are being compared. We present an ANOVA-style mixed model with parameters for array normalization, overall level of gene expression, and change of expression between the classes. For the latter we assume a mixing distribution with a probability mass concentrated at zero, representing genes with no changes, and a normal distribution representing the level of change for the other genes. We estimate the parameters by optimizing the marginal likelihood. To make this practical, Laplace approximations and a backfitting algorithm are used. The performance of the model is studied by simulation and by application to publicly available data sets.
Stichworte
marginal likelihood;
microarray;
mixed model;
laplace approximation;
backfitting;
data
Erscheinungsjahr
2004
Zeitschriftentitel
BIOMETRICS
Band
60
Ausgabe
2
Seite(n)
376-387
ISSN
0006-341X
Page URI
https://pub.uni-bielefeld.de/record/1607637
Zitieren
Kauermann G, Eilers P. Modeling microarray data using a threshold mixture model. BIOMETRICS. 2004;60(2):376-387.
Kauermann, G., & Eilers, P. (2004). Modeling microarray data using a threshold mixture model. BIOMETRICS, 60(2), 376-387. https://doi.org/10.1111/j.0006-341X.2004.00182.x
Kauermann, Göran, and Eilers, P. 2004. “Modeling microarray data using a threshold mixture model”. BIOMETRICS 60 (2): 376-387.
Kauermann, G., and Eilers, P. (2004). Modeling microarray data using a threshold mixture model. BIOMETRICS 60, 376-387.
Kauermann, G., & Eilers, P., 2004. Modeling microarray data using a threshold mixture model. BIOMETRICS, 60(2), p 376-387.
G. Kauermann and P. Eilers, “Modeling microarray data using a threshold mixture model”, BIOMETRICS, vol. 60, 2004, pp. 376-387.
Kauermann, G., Eilers, P.: Modeling microarray data using a threshold mixture model. BIOMETRICS. 60, 376-387 (2004).
Kauermann, Göran, and Eilers, P. “Modeling microarray data using a threshold mixture model”. BIOMETRICS 60.2 (2004): 376-387.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
8 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Bayesian finite Markov mixture model for temporal multi-tissue polygenic patterns.
Liang Y, Kelemen A., Biom J 51(1), 2009
PMID: 19197952
Liang Y, Kelemen A., Biom J 51(1), 2009
PMID: 19197952
A mixture model approach for the analysis of small exploratory microarray experiments.
Muir WM, Rosa GJ, Pittendrigh BR, Xu S, Rider SD, Fountain M, Ogas J., Comput Stat Data Anal 53(5), 2009
PMID: 20160862
Muir WM, Rosa GJ, Pittendrigh BR, Xu S, Rider SD, Fountain M, Ogas J., Comput Stat Data Anal 53(5), 2009
PMID: 20160862
Bayesian models and meta analysis for multiple tissue gene expression data following corticosteroid administration.
Liang Y, Kelemen A., BMC Bioinformatics 9(), 2008
PMID: 18755028
Liang Y, Kelemen A., BMC Bioinformatics 9(), 2008
PMID: 18755028
Quality Weighted Mean and T-test in Microarray Analysis Lead to Improved Accuracy in Gene Expression Measurements and Reduced Type I and II Errors in Differential Expression Detection.
Gao S, Jia S, Hessner M, Wang X., J Comput Sci Syst Biol 1(), 2008
PMID: 20151041
Gao S, Jia S, Hessner M, Wang X., J Comput Sci Syst Biol 1(), 2008
PMID: 20151041
Detecting multiple associations in genome-wide studies.
Dudbridge F, Gusnanto A, Koeleman BP., Hum Genomics 2(5), 2006
PMID: 16595075
Dudbridge F, Gusnanto A, Koeleman BP., Hum Genomics 2(5), 2006
PMID: 16595075
Identifying differentially expressed genes in meta-analysis via Bayesian model-based clustering.
Jung YY, Oh MS, Shin DW, Kang SH, Oh HS., Biom J 48(3), 2006
PMID: 16845907
Jung YY, Oh MS, Shin DW, Kang SH, Oh HS., Biom J 48(3), 2006
PMID: 16845907
Prediction of gene expression levels and the role of cis-acting elements in age-related cataract by applying a promoter-based modeling approach.
Lim JM, Cho KH., Biotechnol Prog 21(4), 2005
PMID: 16080680
Lim JM, Cho KH., Biotechnol Prog 21(4), 2005
PMID: 16080680
Using weighted permutation scores to detect differential gene expression with microarray data.
Guo X, Pan W., J Bioinform Comput Biol 3(4), 2005
PMID: 16078371
Guo X, Pan W., J Bioinform Comput Biol 3(4), 2005
PMID: 16078371
30 References
Daten bereitgestellt von Europe PubMed Central.
Wavelet thresholding via a Bayesian approach.
Abramovich, Journal of the Royal Statistical Society, Series B 60(), 1998
Abramovich, Journal of the Royal Statistical Society, Series B 60(), 1998
A general maximum likelihood analysis of variance components in generalized linear models.
Aitkin M., Biometrics 55(1), 1999
PMID: 11318145
Aitkin M., Biometrics 55(1), 1999
PMID: 11318145
Controlling the false discovery rate: A practical and powerful approach to multiple testing.
Benjamini, Journal of the Royal Statistical Society, Series B, Methodological 57(), 1995
Benjamini, Journal of the Royal Statistical Society, Series B, Methodological 57(), 1995
A comparison of normalization methods for high density oligonucleotide array data based on variance and bias.
Bolstad BM, Irizarry RA, Astrand M, Speed TP., Bioinformatics 19(2), 2003
PMID: 12538238
Bolstad BM, Irizarry RA, Astrand M, Speed TP., Bioinformatics 19(2), 2003
PMID: 12538238
Approximate inference in generalized linear mixed model.
Breslow, Journal of the American Statistical Association 88(), 1993
Breslow, Journal of the American Statistical Association 88(), 1993
Microarray expression profiling identifies genes with altered expression in HDL-deficient mice.
Callow MJ, Dudoit S, Gong EL, Speed TP, Rubin EM., Genome Res. 10(12), 2000
PMID: 11116096
Callow MJ, Dudoit S, Gong EL, Speed TP, Rubin EM., Genome Res. 10(12), 2000
PMID: 11116096
Adaptive Bayesian wavelet shrinkage.
Chipman, Journal of the American Statistical Association 92(), 1997
Chipman, Journal of the American Statistical Association 92(), 1997
Comparison of discrimination methods for the classification of tumors using gene expression data.
Dudoit, Journal of the American Statistical Association 97(), 2002
Dudoit, Journal of the American Statistical Association 97(), 2002
Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments.
Dudoit, Statistica Sinica 12(), 2002
Dudoit, Statistica Sinica 12(), 2002
AUTHOR UNKNOWN, 0
Empirical Bayes analysis of a microarray experiment.
Efron, Journal of the American Statistical Association 96(), 2001
Efron, Journal of the American Statistical Association 96(), 2001
AUTHOR UNKNOWN, 0
Standard errors for EM estimates in generalized linear models with random effects.
Friedl H, Kauermann G., Biometrics 56(3), 2000
PMID: 10985213
Friedl H, Kauermann G., Biometrics 56(3), 2000
PMID: 10985213
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring.
Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES., Science 286(5439), 1999
PMID: 10521349
Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES., Science 286(5439), 1999
PMID: 10521349
Hastie, 1990
Variance stabilization applied to microarray data calibration and to the quantification of differential expression.
Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M., Bioinformatics 18 Suppl 1(), 2002
PMID: 12169536
Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M., Bioinformatics 18 Suppl 1(), 2002
PMID: 12169536
Analysis of variance for gene expression microarray data.
Kerr MK, Martin M, Churchill GA., J. Comput. Biol. 7(6), 2000
PMID: 11382364
Kerr MK, Martin M, Churchill GA., J. Comput. Biol. 7(6), 2000
PMID: 11382364
AUTHOR UNKNOWN, 0
Statistical analysis of a gene expression microarray experiment with replication.
Kerr, Statistica Sinica 12(), 2002
Kerr, Statistica Sinica 12(), 2002
Replicated microarray data.
Lönnstedt, Statistica Sinica 12(), 2002
Lönnstedt, Statistica Sinica 12(), 2002
McCulloch, 2001
McLachlan, 2000
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Severini, 2000
Speed, 2003
Significance analysis of microarrays applied to the ionizing radiation response.
Tusher VG, Tibshirani R, Chu G., Proc. Natl. Acad. Sci. U.S.A. 98(9), 2001
PMID: 11309499
Tusher VG, Tibshirani R, Chu G., Proc. Natl. Acad. Sci. U.S.A. 98(9), 2001
PMID: 11309499
Gene expression analysis with the parametric bootstrap.
van der Laan MJ, Bryan J., Biostatistics 2(4), 2001
PMID: 12933635
van der Laan MJ, Bryan J., Biostatistics 2(4), 2001
PMID: 12933635
Westfall, 1993
Wit, 2004
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 15180663
PubMed | Europe PMC
Suchen in