Modeling microarray data using a threshold mixture model

Kauermann G, Eilers P (2004)
BIOMETRICS 60(2): 376-387.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
An important goal of microarray studies is the detection of genes that show significant changes in expression when two classes of biological samples are being compared. We present an ANOVA-style mixed model with parameters for array normalization, overall level of gene expression, and change of expression between the classes. For the latter we assume a mixing distribution with a probability mass concentrated at zero, representing genes with no changes, and a normal distribution representing the level of change for the other genes. We estimate the parameters by optimizing the marginal likelihood. To make this practical, Laplace approximations and a backfitting algorithm are used. The performance of the model is studied by simulation and by application to publicly available data sets.
Stichworte
marginal likelihood; microarray; mixed model; laplace approximation; backfitting; data
Erscheinungsjahr
2004
Zeitschriftentitel
BIOMETRICS
Band
60
Ausgabe
2
Seite(n)
376-387
ISSN
0006-341X
Page URI
https://pub.uni-bielefeld.de/record/1607637

Zitieren

Kauermann G, Eilers P. Modeling microarray data using a threshold mixture model. BIOMETRICS. 2004;60(2):376-387.
Kauermann, G., & Eilers, P. (2004). Modeling microarray data using a threshold mixture model. BIOMETRICS, 60(2), 376-387. https://doi.org/10.1111/j.0006-341X.2004.00182.x
Kauermann, Göran, and Eilers, P. 2004. “Modeling microarray data using a threshold mixture model”. BIOMETRICS 60 (2): 376-387.
Kauermann, G., and Eilers, P. (2004). Modeling microarray data using a threshold mixture model. BIOMETRICS 60, 376-387.
Kauermann, G., & Eilers, P., 2004. Modeling microarray data using a threshold mixture model. BIOMETRICS, 60(2), p 376-387.
G. Kauermann and P. Eilers, “Modeling microarray data using a threshold mixture model”, BIOMETRICS, vol. 60, 2004, pp. 376-387.
Kauermann, G., Eilers, P.: Modeling microarray data using a threshold mixture model. BIOMETRICS. 60, 376-387 (2004).
Kauermann, Göran, and Eilers, P. “Modeling microarray data using a threshold mixture model”. BIOMETRICS 60.2 (2004): 376-387.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A mixture model approach for the analysis of small exploratory microarray experiments.
Muir WM, Rosa GJ, Pittendrigh BR, Xu S, Rider SD, Fountain M, Ogas J., Comput Stat Data Anal 53(5), 2009
PMID: 20160862
Detecting multiple associations in genome-wide studies.
Dudbridge F, Gusnanto A, Koeleman BP., Hum Genomics 2(5), 2006
PMID: 16595075
Identifying differentially expressed genes in meta-analysis via Bayesian model-based clustering.
Jung YY, Oh MS, Shin DW, Kang SH, Oh HS., Biom J 48(3), 2006
PMID: 16845907

30 References

Daten bereitgestellt von Europe PubMed Central.

Wavelet thresholding via a Bayesian approach.
Abramovich, Journal of the Royal Statistical Society, Series B 60(), 1998
Controlling the false discovery rate: A practical and powerful approach to multiple testing.
Benjamini, Journal of the Royal Statistical Society, Series B, Methodological 57(), 1995
A comparison of normalization methods for high density oligonucleotide array data based on variance and bias.
Bolstad BM, Irizarry RA, Astrand M, Speed TP., Bioinformatics 19(2), 2003
PMID: 12538238
Approximate inference in generalized linear mixed model.
Breslow, Journal of the American Statistical Association 88(), 1993
Microarray expression profiling identifies genes with altered expression in HDL-deficient mice.
Callow MJ, Dudoit S, Gong EL, Speed TP, Rubin EM., Genome Res. 10(12), 2000
PMID: 11116096
Adaptive Bayesian wavelet shrinkage.
Chipman, Journal of the American Statistical Association 92(), 1997
Comparison of discrimination methods for the classification of tumors using gene expression data.
Dudoit, Journal of the American Statistical Association 97(), 2002
Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments.
Dudoit, Statistica Sinica 12(), 2002

AUTHOR UNKNOWN, 0
Empirical Bayes analysis of a microarray experiment.
Efron, Journal of the American Statistical Association 96(), 2001

AUTHOR UNKNOWN, 0
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring.
Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES., Science 286(5439), 1999
PMID: 10521349

Hastie, 1990
Variance stabilization applied to microarray data calibration and to the quantification of differential expression.
Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M., Bioinformatics 18 Suppl 1(), 2002
PMID: 12169536
Analysis of variance for gene expression microarray data.
Kerr MK, Martin M, Churchill GA., J. Comput. Biol. 7(6), 2000
PMID: 11382364

AUTHOR UNKNOWN, 0
Statistical analysis of a gene expression microarray experiment with replication.
Kerr, Statistica Sinica 12(), 2002
Replicated microarray data.
Lönnstedt, Statistica Sinica 12(), 2002

McCulloch, 2001

McLachlan, 2000

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Severini, 2000

Speed, 2003
Significance analysis of microarrays applied to the ionizing radiation response.
Tusher VG, Tibshirani R, Chu G., Proc. Natl. Acad. Sci. U.S.A. 98(9), 2001
PMID: 11309499
Gene expression analysis with the parametric bootstrap.
van der Laan MJ, Bryan J., Biostatistics 2(4), 2001
PMID: 12933635

Westfall, 1993

Wit, 2004
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 15180663
PubMed | Europe PMC

Suchen in

Google Scholar