Invariance implies Gibbsian: Some new results
Bogachev VI, Röckner M, Wang F-Y (2004)
Communications in Mathematical Physics 248(2): 335-355.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Bogachev, Vladimir I.;
Röckner, MichaelUniBi;
Wang, Feng-Yu
Einrichtung
Abstract / Bemerkung
We investigate stationary distributions of stochastic gradient systems in Riemannian manifolds and prove that, under certain assumptions, such distributions are symmetric. These results are extended to countable products of finite dimensional manifolds and applied to Gibbs distributions in the case where the single spin spaces are Riemannian manifolds. In particular, we obtain a new result concerning the question whether all invariant measures are Gibbsian. Actually, we consider a more general object: weak elliptic equations for measures, which, on the one hand, yields the results obtained stronger than the above mentioned statements, and, on the other hand, enables us to give simpler proofs of more general than previously known facts. Applications to concrete models of lattice systems over Z(d) with not necessarily compact spin space are presented (also in the case d greater than or equal to 3 under certain assumptions of decay of interaction).
Erscheinungsjahr
2004
Zeitschriftentitel
Communications in Mathematical Physics
Band
248
Ausgabe
2
Seite(n)
335-355
ISSN
0010-3616
Page URI
https://pub.uni-bielefeld.de/record/1607414
Zitieren
Bogachev VI, Röckner M, Wang F-Y. Invariance implies Gibbsian: Some new results. Communications in Mathematical Physics. 2004;248(2):335-355.
Bogachev, V. I., Röckner, M., & Wang, F. - Y. (2004). Invariance implies Gibbsian: Some new results. Communications in Mathematical Physics, 248(2), 335-355. https://doi.org/10.1007/s00220-004-1096-5
Bogachev, Vladimir I., Röckner, Michael, and Wang, Feng-Yu. 2004. “Invariance implies Gibbsian: Some new results”. Communications in Mathematical Physics 248 (2): 335-355.
Bogachev, V. I., Röckner, M., and Wang, F. - Y. (2004). Invariance implies Gibbsian: Some new results. Communications in Mathematical Physics 248, 335-355.
Bogachev, V.I., Röckner, M., & Wang, F.-Y., 2004. Invariance implies Gibbsian: Some new results. Communications in Mathematical Physics, 248(2), p 335-355.
V.I. Bogachev, M. Röckner, and F.-Y. Wang, “Invariance implies Gibbsian: Some new results”, Communications in Mathematical Physics, vol. 248, 2004, pp. 335-355.
Bogachev, V.I., Röckner, M., Wang, F.-Y.: Invariance implies Gibbsian: Some new results. Communications in Mathematical Physics. 248, 335-355 (2004).
Bogachev, Vladimir I., Röckner, Michael, and Wang, Feng-Yu. “Invariance implies Gibbsian: Some new results”. Communications in Mathematical Physics 248.2 (2004): 335-355.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in