Evidence for disulfide involvement in the regulation of intramolecular autolytic processing by human adamalysin19/ADAM19

Kang TB, Tschesche H, Sang QXA (2004)
EXPERIMENTAL CELL RESEARCH 298(1): 285-295.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kang, TB; Tschesche, HaraldUniBi; Sang, QXA
Abstract / Bemerkung
Human adamalysin 19 (a disintegrin and metalloproteinase 19, hADAM19) is activated by furin-mediated cleavage of the prodomain followed by an autolytic processing within the cysteine-rich domain at Glu(586)-Ser(587), which occurs intramolecularly, producing an NH2 terminal fragment (N-fragment) associated with its COOH-terminal fragment (C-fragment), most likely through disulfide bonds. When stable Madin-Darby canine kidney (MDCK) transfectants overexpressing soluble hADAM 19 were treated with dithiothreitol (DTT) or with media at pH 6.5, 7.5, or 8.5, the secretion and folding of the enzyme were not affected. Autolytic processing was blocked by DTT and pH 6.5 media, which favor disulfide reduction, but was increased by pH 8.5 media, which promotes disulfide formation. Cys(605), Cys(633), Cys(639), and Cys(643) of the C-fragment appear to be partially responsible for the covalent association between the C-fragment and the N-fragment. A new autolytic processing site at Lys(543)-Val(544) was identified in soluble mutants when these cysteine residues were individually mutated to serine residues. Shed fragments were also detectable in the media from MDCK cells stably expressing the full-length Cys633Ser mutant. Ilomastat/GM6001 inhibited hADAM 19 with an IC50 of 447 nM, but scarcely affected the shedding process. The cysteine-rich domain likely forms disulfide bonds to regulate the autolytic processing and shedding of hADAM19. (C) 2004 Elsevier Inc. All rights reserved.
Stichworte
ectodomain; shedding; proteolytic processing; enzyme activity regulation; disulfide; bonds; site-directed mutagenesis; structure-function analyses; A disintegrin and metalloproteinase 19; meltrin beta; pH effect; agent; reducing
Erscheinungsjahr
2004
Zeitschriftentitel
EXPERIMENTAL CELL RESEARCH
Band
298
Ausgabe
1
Seite(n)
285-295
ISSN
0014-4827
Page URI
https://pub.uni-bielefeld.de/record/1607326

Zitieren

Kang TB, Tschesche H, Sang QXA. Evidence for disulfide involvement in the regulation of intramolecular autolytic processing by human adamalysin19/ADAM19. EXPERIMENTAL CELL RESEARCH. 2004;298(1):285-295.
Kang, T. B., Tschesche, H., & Sang, Q. X. A. (2004). Evidence for disulfide involvement in the regulation of intramolecular autolytic processing by human adamalysin19/ADAM19. EXPERIMENTAL CELL RESEARCH, 298(1), 285-295. https://doi.org/10.1016/j.yexcr.2004.04.022
Kang, TB, Tschesche, Harald, and Sang, QXA. 2004. “Evidence for disulfide involvement in the regulation of intramolecular autolytic processing by human adamalysin19/ADAM19”. EXPERIMENTAL CELL RESEARCH 298 (1): 285-295.
Kang, T. B., Tschesche, H., and Sang, Q. X. A. (2004). Evidence for disulfide involvement in the regulation of intramolecular autolytic processing by human adamalysin19/ADAM19. EXPERIMENTAL CELL RESEARCH 298, 285-295.
Kang, T.B., Tschesche, H., & Sang, Q.X.A., 2004. Evidence for disulfide involvement in the regulation of intramolecular autolytic processing by human adamalysin19/ADAM19. EXPERIMENTAL CELL RESEARCH, 298(1), p 285-295.
T.B. Kang, H. Tschesche, and Q.X.A. Sang, “Evidence for disulfide involvement in the regulation of intramolecular autolytic processing by human adamalysin19/ADAM19”, EXPERIMENTAL CELL RESEARCH, vol. 298, 2004, pp. 285-295.
Kang, T.B., Tschesche, H., Sang, Q.X.A.: Evidence for disulfide involvement in the regulation of intramolecular autolytic processing by human adamalysin19/ADAM19. EXPERIMENTAL CELL RESEARCH. 298, 285-295 (2004).
Kang, TB, Tschesche, Harald, and Sang, QXA. “Evidence for disulfide involvement in the regulation of intramolecular autolytic processing by human adamalysin19/ADAM19”. EXPERIMENTAL CELL RESEARCH 298.1 (2004): 285-295.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Cadherin-6B is proteolytically processed during epithelial-to-mesenchymal transitions of the cranial neural crest.
Schiffmacher AT, Padmanabhan R, Jhingory S, Taneyhill LA., Mol Biol Cell 25(1), 2014
PMID: 24196837

37 References

Daten bereitgestellt von Europe PubMed Central.

Remarkable roles of proteolysis on and beyond the cell surface.
Blobel CP., Curr. Opin. Cell Biol. 12(5), 2000
PMID: 10978897
Shedding light on sheddases: role in growth and development.
Kheradmand F, Werb Z., Bioessays 24(1), 2002
PMID: 11782944
Tumor necrosis factor-alpha converting enzyme/ADAM 17 mediates MUC1 shedding.
Thathiah A, Blobel CP, Carson DD., J. Biol. Chem. 278(5), 2002
PMID: 12441351
Tissue inhibitors of metalloproteinases: evolution, structure and function.
Brew K, Dinakarpandian D, Nagase H., Biochim. Biophys. Acta 1477(1-2), 2000
PMID: 10708863
ADAMTS-1 is an active metalloproteinase associated with the extracellular matrix.
Kuno K, Terashima Y, Matsushima K., J. Biol. Chem. 274(26), 1999
PMID: 10373500
Human ADAM 12 (meltrin alpha) is an active metalloprotease.
Loechel F, Gilpin BJ, Engvall E, Albrechtsen R, Wewer UM., J. Biol. Chem. 273(27), 1998
PMID: 9642263
Intracellular maturation of the mouse metalloprotease disintegrin MDC15.
Lum L, Reid MS, Blobel CP., J. Biol. Chem. 273(40), 1998
PMID: 9748307
Metalloprotease-disintegrin MDC9: intracellular maturation and catalytic activity.
Roghani M, Becherer JD, Moss ML, Atherton RE, Erdjument-Bromage H, Arribas J, Blackburn RK, Weskamp G, Tempst P, Blobel CP., J. Biol. Chem. 274(6), 1999
PMID: 9920899
Metalloprotease-disintegrin ADAM 12 interacts with alpha-actinin-1.
Cao Y, Kang Q, Zolkiewska A., Biochem. J. 357(Pt 2), 2001
PMID: 11439084
Intracellular maturation and localization of the tumour necrosis factor alpha convertase (TACE).
Schlondorff J, Becherer JD, Blobel CP., Biochem. J. 347 Pt 1(), 2000
PMID: 10727411
Activation of the proteolytic activity of ADAMTS4 (aggrecanase-1) by C-terminal truncation.
Gao G, Westling J, Thompson VP, Howell TD, Gottschall PE, Sandy JD., J. Biol. Chem. 277(13), 2002
PMID: 11796708
The metalloprotease disintegrin ADAM8. Processing by autocatalysis is required for proteolytic activity and cell adhesion.
Schlomann U, Wildeboer D, Webster A, Antropova O, Zeuschner D, Knight CG, Docherty AJ, Lambert M, Skelton L, Jockusch H, Bartsch JW., J. Biol. Chem. 277(50), 2002
PMID: 12372841
Regulation of the alpha-secretase ADAM10 by its prodomain and proprotein convertases.
Anders A, Gilbert S, Garten W, Postina R, Fahrenholz F., FASEB J. 15(10), 2001
PMID: 11481247
Alpha-secretase activity of the disintegrin metalloprotease ADAM 10. Influences of domain structure.
Fahrenholz F, Gilbert S, Kojro E, Lammich S, Postina R., Ann. N. Y. Acad. Sci. 920(), 2000
PMID: 11193153
Specific sequence elements are required for the expression of functional tumor necrosis factor-alpha-converting enzyme (TACE).
Milla ME, Leesnitzer MA, Moss ML, Clay WC, Carter HL, Miller AB, Su JL, Lambert MH, Willard DH, Sheeley DM, Kost TA, Burkhart W, Moyer M, Blackburn RK, Pahel GL, Mitchell JL, Hoffman CR, Becherer JD., J. Biol. Chem. 274(43), 1999
PMID: 10521439
Roles of Meltrin beta /ADAM19 in the processing of neuregulin.
Shirakabe K, Wakatsuki S, Kurisaki T, Fujisawa-Sehara A., J. Biol. Chem. 276(12), 2000
PMID: 11116142
ADAM13 disintegrin and cysteine-rich domains bind to the second heparin-binding domain of fibronectin.
Gaultier A, Cousin H, Darribere T, Alfandari D., J. Biol. Chem. 277(26), 2002
PMID: 11967265
ADAMTS4 cleaves at the aggrecanase site (Glu373-Ala374) and secondarily at the matrix metalloproteinase site (Asn341-Phe342) in the aggrecan interglobular domain.
Westling J, Fosang AJ, Last K, Thompson VP, Tomkinson KN, Hebert T, McDonagh T, Collins-Racie LA, LaVallie ER, Morris EA, Sandy JD., J. Biol. Chem. 277(18), 2002
PMID: 11854269
The cysteine-rich domain regulates ADAM protease function in vivo.
Smith KM, Gaultier A, Cousin H, Alfandari D, White JM, DeSimone DW., J. Cell Biol. 159(5), 2002
PMID: 12460986
Inhibitory antibodies against endopeptidase activity of human adamalysin 19.
Zhao YG, Wei P, Sang QX., Biochem. Biophys. Res. Commun. 289(1), 2001
PMID: 11708814
Disulfide bonds and protein folding.
Wedemeyer WJ, Welker E, Narayan M, Scheraga HA., Biochemistry 39(15), 2000
PMID: 10757967
Intracellular processing of apolipoprotein J precursor to the mature heterodimer.
Burkey BF, deSilva HV, Harmony JA., J. Lipid Res. 32(6), 1991
PMID: 1658176
Functional analysis of the domain structure of tumor necrosis factor-alpha converting enzyme.
Reddy P, Slack JL, Davis R, Cerretti DP, Kozlosky CJ, Blanton RA, Shows D, Peschon JJ, Black RA., J. Biol. Chem. 275(19), 2000
PMID: 10799547
The cysteine-rich domain of human ADAM 12 supports cell adhesion through syndecans and triggers signaling events that lead to beta1 integrin-dependent cell spreading.
Iba K, Albrechtsen R, Gilpin B, Frohlich C, Loechel F, Zolkiewska A, Ishiguro K, Kojima T, Liu W, Langford JK, Sanderson RD, Brakebusch C, Fassler R, Wewer UM., J. Cell Biol. 149(5), 2000
PMID: 10831617
Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion.
Iba K, Albrechtsen R, Gilpin BJ, Loechel F, Wewer UM., Am. J. Pathol. 154(5), 1999
PMID: 10329602
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 15242783
PubMed | Europe PMC

Suchen in

Google Scholar