The LuxR homolog ExpR, in combination with the sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression

Hoang HH, Becker A, Gonzalez JE (2004)
JOURNAL OF BACTERIOLOGY 186(16): 5460-5472.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Hoang, H. H.; Becker, Anke; Gonzalez, J. E.
Abstract / Bemerkung
Quorum sensing, a population density-dependent mechanism for bacterial communication and gene regulation, plays a crucial role in the symbiosis between alfalfa and its symbiont Sinorhizobium meliloti. The Sin system, one of three quorum sensing systems present in S. meliloti, controls the production of the symbiotically active exopolysaccharide EPS II. Based on DNA microarray data, the Sin system also seems to regulate a multitude of S. meliloti genes, including genes that participate in low-molecular-weight succinoglycan production, motility, and chemotaxis, as well as other cellular processes. Most of the regulation by the Sin system is dependent on the presence of the ExpR regulator, a LuxR homolog. Gene expression profiling data indicate that ExpR participates in additional cellular processes that include nitrogen fixation, metabolism, and metal transport. Based on our microarray analysis we propose a model for the regulation of gene expression by the Sin/ExpR quorum sensing system and another possible quorum sensing system(s) in S. meliloti.
Page URI


Hoang HH, Becker A, Gonzalez JE. The LuxR homolog ExpR, in combination with the sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. JOURNAL OF BACTERIOLOGY. 2004;186(16):5460-5472.
Hoang, H. H., Becker, A., & Gonzalez, J. E. (2004). The LuxR homolog ExpR, in combination with the sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. JOURNAL OF BACTERIOLOGY, 186(16), 5460-5472.
Hoang, H. H., Becker, Anke, and Gonzalez, J. E. 2004. “The LuxR homolog ExpR, in combination with the sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression”. JOURNAL OF BACTERIOLOGY 186 (16): 5460-5472.
Hoang, H. H., Becker, A., and Gonzalez, J. E. (2004). The LuxR homolog ExpR, in combination with the sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. JOURNAL OF BACTERIOLOGY 186, 5460-5472.
Hoang, H.H., Becker, A., & Gonzalez, J.E., 2004. The LuxR homolog ExpR, in combination with the sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. JOURNAL OF BACTERIOLOGY, 186(16), p 5460-5472.
H.H. Hoang, A. Becker, and J.E. Gonzalez, “The LuxR homolog ExpR, in combination with the sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression”, JOURNAL OF BACTERIOLOGY, vol. 186, 2004, pp. 5460-5472.
Hoang, H.H., Becker, A., Gonzalez, J.E.: The LuxR homolog ExpR, in combination with the sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. JOURNAL OF BACTERIOLOGY. 186, 5460-5472 (2004).
Hoang, H. H., Becker, Anke, and Gonzalez, J. E. “The LuxR homolog ExpR, in combination with the sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression”. JOURNAL OF BACTERIOLOGY 186.16 (2004): 5460-5472.

71 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Regulation Mediated by N-Acyl Homoserine Lactone Quorum Sensing Signals in the Rhizobium-Legume Symbiosis.
Calatrava-Morales N, McIntosh M, Soto MJ., Genes (Basel) 9(5), 2018
PMID: 29783703
Water-Soluble Humic Materials Regulate Quorum Sensing in Sinorhizobium meliloti Through a Novel Repressor of expR.
Xu YY, Yang JS, Liu C, Wang ET, Wang RN, Qiu XQ, Li BZ, Chen WF, Yuan HL., Front Microbiol 9(), 2018
PMID: 30627123
The stress-related, rhizobial small RNA RcsR1 destabilizes the autoinducer synthase encoding mRNA sinI in Sinorhizobium meliloti.
Baumgardt K, Šmídová K, Rahn H, Lochnit G, Robledo M, Evguenieva-Hackenberg E., RNA Biol 13(5), 2016
PMID: 26588798
A perspective on inter-kingdom signaling in plant-beneficial microbe interactions.
Rosier A, Bishnoi U, Lakshmanan V, Sherrier DJ, Bais HP., Plant Mol Biol 90(6), 2016
PMID: 26792782
Modulation of Sinorhizobium meliloti quorum sensing by Hfq-mediated post-transcriptional regulation of ExpR.
Gao M, Tang M, Guerich L, Salas-Gonzalez I, Teplitski M., Environ Microbiol Rep 7(1), 2015
PMID: 25382642
Phaeobacter sp. strain Y4I utilizes two separate cell-to-cell communication systems to regulate production of the antimicrobial indigoidine.
Cude WN, Prevatte CW, Hadden MK, May AL, Smith RT, Swain CL, Campagna SR, Buchan A., Appl Environ Microbiol 81(4), 2015
PMID: 25527537
Novel mixed-linkage β-glucan activated by c-di-GMP in Sinorhizobium meliloti.
Pérez-Mendoza D, Rodríguez-Carvajal MÁ, Romero-Jiménez L, Farias Gde A, Lloret J, Gallegos MT, Sanjuán J., Proc Natl Acad Sci U S A 112(7), 2015
PMID: 25650430
Quorum sensing restrains growth and is rapidly inactivated during domestication of Sinorhizobium meliloti.
Charoenpanich P, Soto MJ, Becker A, McIntosh M., Environ Microbiol Rep 7(2), 2015
PMID: 25534533
Genomic characterization of Sinorhizobium meliloti AK21, a wild isolate from the Aral Sea Region.
Molina-Sánchez MD, López-Contreras JA, Toro N, Fernández-López M., Springerplus 4(), 2015
PMID: 26090306
Bacterial quorum sensing: circuits and applications.
Garg N, Manchanda G, Kumar A., Antonie Van Leeuwenhoek 105(2), 2014
PMID: 24281736
Genome-wide profiling of Hfq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in Sinorhizobium meliloti.
Torres-Quesada O, Reinkensmeier J, Schlüter JP, Robledo M, Peregrina A, Giegerich R, Toro N, Becker A, Jiménez-Zurdo JI., RNA Biol 11(5), 2014
PMID: 24786641
Rhizobial galactoglucan determines the predatory pattern of Myxococcus xanthus and protects Sinorhizobium meliloti from predation.
Pérez J, Jiménez-Zurdo JI, Martínez-Abarca F, Millán V, Shimkets LJ, Muñoz-Dorado J., Environ Microbiol 16(7), 2014
PMID: 24707988
RNA sequencing analysis of the broad-host-range strain Sinorhizobium fredii NGR234 identifies a large set of genes linked to quorum sensing-dependent regulation in the background of a traI and ngrI deletion mutant.
Krysciak D, Grote J, Rodriguez Orbegoso M, Utpatel C, Förstner KU, Li L, Schmeisser C, Krishnan HB, Streit WR., Appl Environ Microbiol 80(18), 2014
PMID: 25002423
Global mapping of transcription start sites and promoter motifs in the symbiotic α-proteobacterium Sinorhizobium meliloti 1021.
Schlüter JP, Reinkensmeier J, Barnett MJ, Lang C, Krol E, Giegerich R, Long SR, Becker A., BMC Genomics 14(), 2013
PMID: 23497287
Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti.
Charoenpanich P, Meyer S, Becker A, McIntosh M., J Bacteriol 195(14), 2013
PMID: 23687265
Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex.
Suppiger A, Schmid N, Aguilar C, Pessi G, Eberl L., Virulence 4(5), 2013
PMID: 23799665
Quorum sensing and self-quorum quenching in the intracellular pathogen Brucellamelitensis.
Terwagne M, Mirabella A, Lemaire J, Deschamps C, De Bolle X, Letesson JJ., PLoS One 8(12), 2013
PMID: 24349302
ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti.
Nogales J, Bernabéu-Roda L, Cuéllar V, Soto MJ., J Bacteriol 194(8), 2012
PMID: 22328673
Quorum sensing in the context of food microbiology.
Skandamis PN, Nychas GJ., Appl Environ Microbiol 78(16), 2012
PMID: 22706047
Lon protease of Azorhizobium caulinodans ORS571 is required for suppression of reb gene expression.
Nakajima A, Aono T, Tsukada S, Siarot L, Ogawa T, Oyaizu H., Appl Environ Microbiol 78(17), 2012
PMID: 22752172
Quorum sensing: A nobel target for antibacterial agents.
Asif M, Acharya M., Avicenna J Med 2(4), 2012
PMID: 23826557
Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato.
El Oirdi M, El Rahman TA, Rigano L, El Hadrami A, Rodriguez MC, Daayf F, Vojnov A, Bouarab K., Plant Cell 23(6), 2011
PMID: 21665999
Co-ordination of quorum-sensing regulation in Rhizobium leguminosarum by induction of an anti-repressor.
Frederix M, Edwards A, McAnulla C, Downie JA., Mol Microbiol 81(4), 2011
PMID: 21732996
Role and regulation of bacterial LuxR-like regulators.
Chen J, Xie J., J Cell Biochem 112(10), 2011
PMID: 21678467
The hanR/hanI quorum-sensing system of Halomonas anticariensis, a moderately halophilic bacterium.
Tahrioui A, Quesada E, Llamas I., Microbiology 157(pt 12), 2011
PMID: 22016566
An integrated view of biofilm formation in rhizobia.
Rinaudi LV, Giordano W., FEMS Microbiol Lett 304(1), 2010
PMID: 19930462
A complex journey: transmission of microbial symbionts.
Bright M, Bulgheresi S., Nat Rev Microbiol 8(3), 2010
PMID: 20157340
EPS II-dependent autoaggregation of Sinorhizobium meliloti planktonic cells.
Sorroche FG, Rinaudi LV, Zorreguieta A, Giordano W., Curr Microbiol 61(5), 2010
PMID: 20383768
A portal for rhizobial genomes: RhizoGATE integrates a Sinorhizobium meliloti genome annotation update with postgenome data.
Becker A, Barnett MJ, Capela D, Dondrup M, Kamp PB, Krol E, Linke B, Rüberg S, Runte K, Schroeder BK, Weidner S, Yurgel SN, Batut J, Long SR, Pühler A, Goesmann A., J Biotechnol 140(1-2), 2009
PMID: 19103235
A Burkholderia cenocepacia orphan LuxR homolog is involved in quorum-sensing regulation.
Malott RJ, O'Grady EP, Toller J, Inhülsen S, Eberl L, Sokol PA., J Bacteriol 191(8), 2009
PMID: 19201791
The cin and rai quorum-sensing regulatory systems in Rhizobium leguminosarum are coordinated by ExpR and CinS, a small regulatory protein coexpressed with CinI.
Edwards A, Frederix M, Wisniewski-Dyé F, Jones J, Zorreguieta A, Downie JA., J Bacteriol 191(9), 2009
PMID: 19270098
Orphan LuxR regulators of quorum sensing.
Patankar AV, González JE., FEMS Microbiol Rev 33(4), 2009
PMID: 19222586
LuxR-family 'solos': bachelor sensors/regulators of signalling molecules.
Subramoni S, Venturi V., Microbiology 155(pt 5), 2009
PMID: 19383698
Role of quorum sensing in Sinorhizobium meliloti-Alfalfa symbiosis.
Gurich N, González JE., J Bacteriol 191(13), 2009
PMID: 19395488
Identification of direct transcriptional target genes of ExoS/ChvI two-component signaling in Sinorhizobium meliloti.
Chen EJ, Fisher RF, Perovich VM, Sabio EA, Long SR., J Bacteriol 191(22), 2009
PMID: 19749054
Regulation of motility by the ExpR/Sin quorum-sensing system in Sinorhizobium meliloti.
Hoang HH, Gurich N, González JE., J Bacteriol 190(3), 2008
PMID: 18024512
Exopolysaccharide biosynthesis is important for Mesorhizobium tianshanense: plant host interaction.
Wang P, Zhong Z, Zhou J, Cai T, Zhu J., Arch Microbiol 189(5), 2008
PMID: 18188540
The outer membrane protein TolC from Sinorhizobium meliloti affects protein secretion, polysaccharide biosynthesis, antimicrobial resistance, and symbiosis.
Cosme AM, Becker A, Santos MR, Sharypova LA, Santos PM, Moreira LM., Mol Plant Microbe Interact 21(7), 2008
PMID: 18533835
Construction and expression of sugar kinase transcriptional gene fusions by using the Sinorhizobium meliloti ORFeome.
Humann JL, Schroeder BK, Mortimer MW, House BL, Yurgel SN, Maloney SC, Ward KL, Fallquist HM, Ziemkiewicz HT, Kahn ML., Appl Environ Microbiol 74(21), 2008
PMID: 18791020
Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility.
Bahlawane C, McIntosh M, Krol E, Becker A., Mol Plant Microbe Interact 21(11), 2008
PMID: 18842098
Antibody catalyzed hydrolysis of a quorum sensing signal found in Gram-negative bacteria.
De Lamo Marin S, Xu Y, Meijler MM, Janda KD., Bioorg Med Chem Lett 17(6), 2007
PMID: 17254784
Effector-stimulated single molecule protein-DNA interactions of a quorum-sensing system in Sinorhizobium meliloti.
Bartels FW, McIntosh M, Fuhrmann A, Metzendorf C, Plattner P, Sewald N, Anselmetti D, Ros R, Becker A., Biophys J 92(12), 2007
PMID: 17384071
Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes.
Sanchez-Contreras M, Bauer WD, Gao M, Robinson JB, Allan Downie J., Philos Trans R Soc Lond B Biol Sci 362(1483), 2007
PMID: 17360278
Effects of AiiA-mediated quorum quenching in Sinorhizobium meliloti on quorum-sensing signals, proteome patterns, and symbiotic interactions.
Gao M, Chen H, Eberhard A, Gronquist MR, Robinson JB, Connolly M, Teplitski M, Rolfe BG, Bauer WD., Mol Plant Microbe Interact 20(7), 2007
PMID: 17601171
A LuxR homologue of Xanthomonas oryzae pv. oryzae is required for optimal rice virulence
FERLUGA S, BIGIRIMANA J, HÖFTE M, VENTURI V., Mol Plant Pathol 8(4), 2007
PMID: IND43926185
The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti.
Glenn SA, Gurich N, Feeney MA, González JE., J Bacteriol 189(19), 2007
PMID: 17644606
Rhizobial exopolysaccharides: genetic control and symbiotic functions.
Skorupska A, Janczarek M, Marczak M, Mazur A, Król J., Microb Cell Fact 5(), 2006
PMID: 16483356
Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection.
Capela D, Filipe C, Bobik C, Batut J, Bruand C., Mol Plant Microbe Interact 19(4), 2006
PMID: 16610739
Messing with bacterial quorum sensing.
González JE, Keshavan ND., Microbiol Mol Biol Rev 70(4), 2006
PMID: 17158701
sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti.
Gao M, Chen H, Eberhard A, Gronquist MR, Robinson JB, Rolfe BG, Bauer WD., J Bacteriol 187(23), 2005
PMID: 16291666
L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti.
Keshavan ND, Chowdhary PK, Haines DC, González JE., J Bacteriol 187(24), 2005
PMID: 16321947
Functional genomic analysis of global regulator NolR in Sinorhizobium meliloti.
Chen H, Gao K, Kondorosi E, Kondorosi A, Rolfe BG., Mol Plant Microbe Interact 18(12), 2005
PMID: 16478054

67 References

Daten bereitgestellt von Europe PubMed Central.

The role of RsmA in the regulation of swarming motility in Serratia marcescens.
Ang S, Horng YT, Shu JC, Soo PC, Liu JH, Yi WC, Lai HC, Luh KT, Ho SW, Swift S., J. Biomed. Sci. 8(2), 2001
PMID: 11287746
Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa.
Battisti L, Lara JC, Leigh JA., Proc. Natl. Acad. Sci. U.S.A. 89(12), 1992
PMID: 1608972
Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions.
Becker A, Berges H, Krol E, Bruand C, Ruberg S, Capela D, Lauber E, Meilhoc E, Ampe F, de Bruijn FJ, Fourment J, Francez-Charlot A, Kahn D, Kuster H, Liebe C, Puhler A, Weidner S, Batut J., Mol. Plant Microbe Interact. 17(3), 2004
PMID: 15000396
Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803.
Bhaya D, Bianco NR, Bryant D, Grossman A., Mol. Microbiol. 37(4), 2000
PMID: 10972813
Exploring the metabolic and genetic control of gene expression on a genomic scale.
DeRisi JL, Iyer VR, Brown PO., Science 278(5338), 1997
PMID: 9381177
Quorum sensing in Vibrio fischeri: elements of the luxl promoter.
Egland KA, Greenberg EP., Mol. Microbiol. 31(4), 1999
PMID: 10096086
Identification of genes and gene products necessary for bacterial bioluminescence.
Engebrecht J, Silverman M., Proc. Natl. Acad. Sci. U.S.A. 81(13), 1984
PMID: 6377310
Genetic regulation of nitrogen fixation in rhizobia.
Fischer HM., Microbiol. Rev. 58(3), 1994
PMID: 7968919
Negative autoregulation of the Rhizobium meliloti fixK gene is indirect and requires a newly identified regulator, FixT.
Foussard M, Garnerone AM, Ni F, Soupene E, Boistard P, Batut J., Mol. Microbiol. 25(1), 1997
PMID: 11902723
Self perception in bacteria: quorum sensing with acylated homoserine lactones.
Fuqua C, Greenberg EP., Curr. Opin. Microbiol. 1(2), 1998
PMID: 10066485
Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing.
Fuqua C, Parsek MR, Greenberg EP., Annu. Rev. Genet. 35(), 2001
PMID: 11700290
Quorum sensing in nitrogen-fixing rhizobia.
Gonzalez JE, Marketon MM., Microbiol. Mol. Biol. Rev. 67(4), 2003
PMID: 14665677
Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa.
Gonzalez JE, Reuhs BL, Walker GC., Proc. Natl. Acad. Sci. U.S.A. 93(16), 1996
PMID: 8710923
Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function.
Gonzalez JE, York GM, Walker GC., Gene 179(1), 1996
PMID: 8955640
What makes the rhizobia-legume symbiosis so special?
Hirsch AM, Lum MR, Downie JA., Plant Physiol. 127(4), 2001
PMID: 11743092

Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1.
Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GS, Lazdunski A, Williams P., Mol. Microbiol. 17(2), 1995
PMID: 7494482
Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules.
Leigh JA, Signer ER, Walker GC., Proc. Natl. Acad. Sci. U.S.A. 82(18), 1985
PMID: 3862129
The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci.
Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dye F, Williams P, Downie JA., Mol. Microbiol. 37(1), 2000
PMID: 10931307
Genes and signals in the rhizobium-legume symbiosis.
Long SR., Plant Physiol. 125(1), 2001
PMID: 11154299
Prokaryotic plant parasites.
Long SR, Staskawicz BJ., Cell 73(5), 1993
PMID: 8500181
Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti.
Marketon MM, Glenn SA, Eberhard A, Gonzalez JE., J. Bacteriol. 185(1), 2003
PMID: 12486070
Identification of two quorum-sensing systems in Sinorhizobium meliloti.
Marketon MM, Gonzalez JE., J. Bacteriol. 184(13), 2002
PMID: 12057940
Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones.
Marketon MM, Gronquist MR, Eberhard A, Gonzalez JE., J. Bacteriol. 184(20), 2002
PMID: 12270827

Molecular biology of bacterial bioluminescence.
Meighen EA., Microbiol. Rev. 55(1), 1991
PMID: 2030669
Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides.
Pellock BJ, Cheng HP, Walker GC., J. Bacteriol. 182(15), 2000
PMID: 10894742
A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti.
Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC., J. Bacteriol. 184(18), 2002
PMID: 12193623
Rhizobium fix genes mediate at least two communication steps in symbiotic nodule development.
Putnoky P, Grosskopf E, Ha DT, Kiss GB, Kondorosi A., J. Cell Biol. 106(3), 1988
PMID: 2450096
Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae.
Rodelas B, Lithgow JK, Wisniewski-Dye F, Hardman A, Wilkinson A, Economou A, Williams P, Downie JA., J. Bacteriol. 181(12), 1999
PMID: 10368158
Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: genome-wide profiling of osmoadaptive gene expression.
Ruberg S, Tian ZX, Krol E, Linke B, Meyer F, Wang Y, Puhler A, Weidner S, Becker A., J. Biotechnol. 106(2-3), 2003
PMID: 14651866
Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-L-homoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors.
Schripsema J, de Rudder KE, van Vliet TB, Lankhorst PP, de Vroom E, Kijne JW, van Brussel AA., J. Bacteriol. 178(2), 1996
PMID: 8550454
Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation.
Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR., Proc. Natl. Acad. Sci. U.S.A. 96(6), 1999
PMID: 10077610
A genomic perspective on protein families.
Tatusov RL, Koonin EV, Lipman DJ., Science 278(5338), 1997
PMID: 9381173
The COG database: new developments in phylogenetic classification of proteins from complete genomes.
Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV., Nucleic Acids Res. 29(1), 2001
PMID: 11125040
The Rhizobium-plant symbiosis.
van Rhijn P, Vanderleyden J., Microbiol. Rev. 59(1), 1995
PMID: 7708010
Quorum-sensing in Gram-negative bacteria.
Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP., FEMS Microbiol. Rev. 25(4), 2001
PMID: 11524130

N-acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer.
Wilkinson A, Danino V, Wisniewski-Dye F, Lithgow JK, Downie JA., J. Bacteriol. 184(16), 2002
PMID: 12142421
Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa.
Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M, Bally M, Chapon V, Salmond GP, Bycroft BW., Proc. Natl. Acad. Sci. U.S.A. 92(20), 1995
PMID: 7568146
Quorum-sensing in Rhizobium.
Wisniewski-Dye F, Downie JA., Antonie Van Leeuwenhoek 81(1-4), 2002
PMID: 12448738
raiIR genes are part of a quorum-sensing network controlled by cinI and cinR in Rhizobium leguminosarum.
Wisniewski-Dye F, Jones J, Chhabra SR, Downie JA., J. Bacteriol. 184(6), 2002
PMID: 11872711
Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation.
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP., Nucleic Acids Res. 30(4), 2002
PMID: 11842121
Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803.
Yoshihara S, Geng X, Okamoto S, Yura K, Murata T, Go M, Ohmori M, Ikeuchi M., Plant Cell Physiol. 42(1), 2001
PMID: 11158445

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 15292148
PubMed | Europe PMC

Suchen in

Google Scholar