Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011

Krol E, Becker A (2004)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Krol, E; Becker, A
Abstract / Bemerkung
The global response to phosphate starvation was analysed at the transcriptional level in two closely related strains of Sinorhizobium meliloti, Rm1021 and Rm2011. The Pho regulon is known to be induced by PhoB under conditions of phosphate limitation. Ninety-eight genes were found to be significantly induced (more than three-fold) in a phoB-dependent manner in phosphate-stressed cells, and phoB-independent repression of 86 genes was observed. Possible roles of these genes in the phosphate stress response are discussed. Twenty new putative PHO box sequences were identified in regions upstream of 17 of the transcriptional units that showed phoB-dependent, or partially phoB-dependent, regulation, indicating direct regulation of these genes by PhoB. Despite the overall similarity between the phosphate stress responses in Rm1021 and Rm2011, lower induction rates were found for a set of phoB-dependent genes in Rm1021. Moreover, Rm1021 exhibited moderate constitutive activation of 12 phosphate starvation-inducible, phoB-dependent genes when cells were grown in a complex medium. A 1-bp deletion was observed in the pstC ORF in Rm1021, which results in truncation of the protein product. This mutation is probably responsible for the expression of phosphate starvation-inducible genes in Rm1021 in the absence of phosphate stress.
starvation; phosphorus; adaptation; gene regulation
Page URI


Krol E, Becker A. Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. MOLECULAR GENETICS AND GENOMICS. 2004;272(1):1-17.
Krol, E., & Becker, A. (2004). Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. MOLECULAR GENETICS AND GENOMICS, 272(1), 1-17.
Krol, E, and Becker, A. 2004. “Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011”. MOLECULAR GENETICS AND GENOMICS 272 (1): 1-17.
Krol, E., and Becker, A. (2004). Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. MOLECULAR GENETICS AND GENOMICS 272, 1-17.
Krol, E., & Becker, A., 2004. Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. MOLECULAR GENETICS AND GENOMICS, 272(1), p 1-17.
E. Krol and A. Becker, “Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011”, MOLECULAR GENETICS AND GENOMICS, vol. 272, 2004, pp. 1-17.
Krol, E., Becker, A.: Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. MOLECULAR GENETICS AND GENOMICS. 272, 1-17 (2004).
Krol, E, and Becker, A. “Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011”. MOLECULAR GENETICS AND GENOMICS 272.1 (2004): 1-17.

97 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Phosphate starvation response controls genes required to synthesize the phosphate analog arsenate.
Wang Q, Kang YS, Alowaifeer A, Shi K, Fan X, Wang L, Jetter J, Bothner B, Wang G, McDermott TR., Environ Microbiol 20(5), 2018
PMID: 29575522
Regulation Mediated by N-Acyl Homoserine Lactone Quorum Sensing Signals in the Rhizobium-Legume Symbiosis.
Calatrava-Morales N, McIntosh M, Soto MJ., Genes (Basel) 9(5), 2018
PMID: 29783703
Evidence for Phosphate Starvation of Rhizobia without Terminal Differentiation in Legume Nodules.
Hu Y, Jiao J, Liu LX, Sun YW, Chen WF, Sui XH, Chen WX, Tian CF., Mol Plant Microbe Interact 31(10), 2018
PMID: 29663866
Most Sinorhizobium meliloti Extracytoplasmic Function Sigma Factors Control Accessory Functions.
Lang C, Barnett MJ, Fisher RF, Smith LS, Diodati ME, Long SR., mSphere 3(5), 2018
PMID: 30305320
Role of O2 in the Growth of Rhizobium leguminosarum bv. viciae 3841 on Glucose and Succinate.
Wheatley RM, Ramachandran VK, Geddes BA, Perry BJ, Yost CK, Poole PS., J Bacteriol 199(1), 2017
PMID: 27795326
Phosphate Limitation Triggers the Dissolution of Precipitated Iron by the Marine Bacterium Pseudovibrio sp. FO-BEG1.
Romano S, Bondarev V, Kölling M, Dittmar T, Schulz-Vogt HN., Front Microbiol 8(), 2017
PMID: 28352252
Effects of P limitation and molecules from peanut root exudates on pqqE gene expression and pqq promoter activity in the phosphate-solubilizing strain Serratia sp. S119.
Ludueña LM, Anzuay MS, Magallanes-Noguera C, Tonelli ML, Ibañez FJ, Angelini JG, Fabra A, McIntosh M, Taurian T., Res Microbiol 168(8), 2017
PMID: 28709697
PhoU Allows Rapid Adaptation to High Phosphate Concentrations by Modulating PstSCAB Transport Rate in Sinorhizobium meliloti.
diCenzo GC, Sharthiya H, Nanda A, Zamani M, Finan TM., J Bacteriol 199(18), 2017
PMID: 28416708
Succinoglycan Production Contributes to Acidic pH Tolerance in Sinorhizobium meliloti Rm1021.
Hawkins JP, Geddes BA, Oresnik IJ., Mol Plant Microbe Interact 30(12), 2017
PMID: 28871850
Divergent genes in potential inoculant Sinorhizobium strains are related to DNA replication, recombination, and repair.
Penttinen P, Greco D, Muntyan V, Terefework Z, De Lajudie P, Roumiantseva M, Becker A, Auvinen P, Lindström K., J Basic Microbiol 56(6), 2016
PMID: 26879331
Methyl-esterified 3-hydroxybutyrate oligomers protect bacteria from hydroxyl radicals.
Koskimäki JJ, Kajula M, Hokkanen J, Ihantola EL, Kim JH, Hautajärvi H, Hankala E, Suokas M, Pohjanen J, Podolich O, Kozyrovska N, Turpeinen A, Pääkkönen M, Mattila S, Campbell BC, Pirttilä AM., Nat Chem Biol 12(5), 2016
PMID: 26974813
Interaction between Nitrogen and Phosphate Stress Responses in Sinorhizobium meliloti.
Hagberg KL, Yurgel SN, Mulder M, Kahn ML., Front Microbiol 7(), 2016
PMID: 27965651
System-Wide Adaptations of Desulfovibrio alaskensis G20 to Phosphate-Limited Conditions.
Bosak T, Schubotz F, de Santiago-Torio A, Kuehl JV, Carlson HK, Watson N, Daye M, Summons RE, Arkin AP, Deutschbauer AM., PLoS One 11(12), 2016
PMID: 28030630
Cell Cycle Control by the Master Regulator CtrA in Sinorhizobium meliloti.
Pini F, De Nisco NJ, Ferri L, Penterman J, Fioravanti A, Brilli M, Mengoni A, Bazzicalupo M, Viollier PH, Walker GC, Biondi EG., PLoS Genet 11(5), 2015
PMID: 25978424
Genomic characterization of Sinorhizobium meliloti AK21, a wild isolate from the Aral Sea Region.
Molina-Sánchez MD, López-Contreras JA, Toro N, Fernández-López M., Springerplus 4(), 2015
PMID: 26090306
A Mathematical Model of Quorum Sensing Induced Biofilm Detachment.
Emerenini BO, Hense BA, Kuttler C, Eberl HJ., PLoS One 10(7), 2015
PMID: 26197231
Global analysis of cell cycle gene expression of the legume symbiont Sinorhizobium meliloti.
De Nisco NJ, Abo RP, Wu CM, Penterman J, Walker GC., Proc Natl Acad Sci U S A 111(9), 2014
PMID: 24501121
Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase.
Hove-Jensen B, Zechel DL, Jochimsen B., Microbiol Mol Biol Rev 78(1), 2014
PMID: 24600043
Phosphate limited fed-batch processes: impact on carbon usage and energy metabolism in Escherichia coli.
Schuhmacher T, Löffler M, Hurler T, Takors R., J Biotechnol 190(), 2014
PMID: 24833421
Genetic basis for denitrification in Ensifer meliloti.
Torres MJ, Rubia MI, de la Peña TC, Pueyo JJ, Bedmar EJ, Delgado MJ., BMC Microbiol 14(), 2014
PMID: 24888981
Phosphatidylcholine biosynthesis and function in bacteria.
Geiger O, López-Lara IM, Sohlenkamp C., Biochim Biophys Acta 1831(3), 2013
PMID: 22922101
Global mapping of transcription start sites and promoter motifs in the symbiotic α-proteobacterium Sinorhizobium meliloti 1021.
Schlüter JP, Reinkensmeier J, Barnett MJ, Lang C, Krol E, Giegerich R, Long SR, Becker A., BMC Genomics 14(), 2013
PMID: 23497287
Functional analysis of the copy 1 of the fixNOQP operon of Ensifer meliloti under free-living micro-oxic and symbiotic conditions.
Torres MJ, Hidalgo-García A, Bedmar EJ, Delgado MJ., J Appl Microbiol 114(6), 2013
PMID: 23414432
Next-generation annotation of prokaryotic genomes with EuGene-P: application to Sinorhizobium meliloti 2011.
Sallet E, Roux B, Sauviac L, Jardinaud MF, Carrère S, Faraut T, de Carvalho-Niebel F, Gouzy J, Gamas P, Capela D, Bruand C, Schiex T., DNA Res 20(4), 2013
PMID: 23599422
A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina.
Sorroche FG, Spesia MB, Zorreguieta A, Giordano W., Appl Environ Microbiol 78(12), 2012
PMID: 22492433
A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules.
Queiroux C, Washburn BK, Davis OM, Stewart J, Brewer TE, Lyons MR, Jones KM., BMC Microbiol 12(), 2012
PMID: 22587634
Transcriptomic studies of phosphate control of primary and secondary metabolism in Streptomyces coelicolor.
Martín JF, Santos-Beneit F, Rodríguez-García A, Sola-Landa A, Smith MC, Ellingsen TE, Nieselt K, Burroughs NJ, Wellington EM., Appl Microbiol Biotechnol 95(1), 2012
PMID: 22622839
Ornithine lipids and their structural modifications: from A to E and beyond.
Vences-Guzmán MÁ, Geiger O, Sohlenkamp C., FEMS Microbiol Lett 335(1), 2012
PMID: 22724388
Genome-wide analysis of the Pho regulon in a pstCA mutant of Citrobacter rodentium.
Cheng C, Wakefield MJ, Yang J, Tauschek M, Robins-Browne RM., PLoS One 7(11), 2012
PMID: 23226353
Sinorhizobium meliloti sigma factors RpoE1 and RpoE4 are activated in stationary phase in response to sulfite.
Bastiat B, Sauviac L, Picheraux C, Rossignol M, Bruand C., PLoS One 7(11), 2012
PMID: 23226379
Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces.
Martín JF, Sola-Landa A, Santos-Beneit F, Fernández-Martínez LT, Prieto C, Rodríguez-García A., Microb Biotechnol 4(2), 2011
PMID: 21342462
A comparative transcriptome analysis of Rhizobium etli bacteroids: specific gene expression during symbiotic nongrowth.
Vercruysse M, Fauvart M, Beullens S, Braeken K, Cloots L, Engelen K, Marchal K, Michiels J., Mol Plant Microbe Interact 24(12), 2011
PMID: 21809980
Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer.
N'Guessan AL, Elifantz H, Nevin KP, Mouser PJ, Methé B, Woodard TL, Manley K, Williams KH, Wilkins MJ, Larsen JT, Long PE, Lovley DR., ISME J 4(2), 2010
PMID: 20010635
Sinorhizobium meliloti phospholipase C required for lipid remodeling during phosphorus limitation.
Zavaleta-Pastor M, Sohlenkamp C, Gao JL, Guan Z, Zaheer R, Finan TM, Raetz CR, López-Lara IM, Geiger O., Proc Natl Acad Sci U S A 107(1), 2010
PMID: 20018679
The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa.
Torres-Quesada O, Oruezabal RI, Peregrina A, Jofré E, Lloret J, Rivilla R, Toro N, Jiménez-Zurdo JI., BMC Microbiol 10(), 2010
PMID: 20205931
Transcriptome profiling of a Sinorhizobium meliloti fadD mutant reveals the role of rhizobactin 1021 biosynthesis and regulation genes in the control of swarming.
Nogales J, Domínguez-Ferreras A, Amaya-Gómez CV, van Dillewijn P, Cuéllar V, Sanjuán J, Olivares J, Soto MJ., BMC Genomics 11(), 2010
PMID: 20210991
The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti.
de Lucena DK, Pühler A, Weidner S., BMC Microbiol 10(), 2010
PMID: 20955556
Inositol catabolism, a key pathway in sinorhizobium meliloti for competitive host nodulation.
Kohler PR, Zheng JY, Schoffers E, Rossbach S., Appl Environ Microbiol 76(24), 2010
PMID: 20971862
Differential proteomic analysis highlights metabolic strategies associated with balhimycin production in Amycolatopsis balhimycina chemostat cultivations.
Gallo G, Alduina R, Renzone G, Thykaer J, Bianco L, Eliasson-Lantz A, Scaloni A, Puglia AM., Microb Cell Fact 9(), 2010
PMID: 21110849
Genetic and biochemical properties of an alkaline phosphatase PhoX family protein found in many bacteria.
Zaheer R, Morton R, Proudfoot M, Yakunin A, Finan TM., Environ Microbiol 11(6), 2009
PMID: 19245529
Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1.
Zaborin A, Romanowski K, Gerdes S, Holbrook C, Lepine F, Long J, Poroyko V, Diggle SP, Wilke A, Righetti K, Morozova I, Babrowski T, Liu DC, Zaborina O, Alverdy JC., Proc Natl Acad Sci U S A 106(15), 2009
PMID: 19369215
Role of quorum sensing in Sinorhizobium meliloti-Alfalfa symbiosis.
Gurich N, González JE., J Bacteriol 191(13), 2009
PMID: 19395488
The Symbiosis Interactome: a computational approach reveals novel components, functional interactions and modules in Sinorhizobium meliloti.
Rodriguez-Llorente I, Caviedes MA, Dary M, Palomares AJ, Cánovas FM, Peregrín-Alvarez JM., BMC Syst Biol 3(), 2009
PMID: 19531251
Metabolic capacity of Sinorhizobium (Ensifer) meliloti strains as determined by phenotype MicroArray analysis.
Biondi EG, Tatti E, Comparini D, Giuntini E, Mocali S, Giovannetti L, Bazzicalupo M, Mengoni A, Viti C., Appl Environ Microbiol 75(16), 2009
PMID: 19561177
Genome variation in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti.
Guo H, Sun S, Eardly B, Finan T, Xu J., Genome 52(10), 2009
PMID: 19935910
Regulation of motility by the ExpR/Sin quorum-sensing system in Sinorhizobium meliloti.
Hoang HH, Gurich N, González JE., J Bacteriol 190(3), 2008
PMID: 18024512
Characterizing the dynamic nature of the Yersinia pestis periplasmic proteome in response to nutrient exhaustion and temperature change.
Pieper R, Huang ST, Clark DJ, Robinson JM, Parmar PP, Alami H, Bunai CL, Perry RD, Fleischmann RD, Peterson SN., Proteomics 8(7), 2008
PMID: 18383009
Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia.
Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, Carrère S, Cruveiller S, Dossat C, Lajus A, Marchetti M, Poinsot V, Rouy Z, Servin B, Saad M, Schenowitz C, Barbe V, Batut J, Médigue C, Masson-Boivin C., Genome Res 18(9), 2008
PMID: 18490699
Auxotrophy accounts for nodulation defect of most Sinorhizobium meliloti mutants in the branched-chain amino acid biosynthesis pathway.
de las Nieves Peltzer M, Roques N, Poinsot V, Aguilar OM, Batut J, Capela D., Mol Plant Microbe Interact 21(9), 2008
PMID: 18700827
Prediction of Sinorhizobium meliloti sRNA genes and experimental detection in strain 2011.
Valverde C, Livny J, Schlüter JP, Reinkensmeier J, Becker A, Parisi G., BMC Genomics 9(), 2008
PMID: 18793445
Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility.
Bahlawane C, McIntosh M, Krol E, Becker A., Mol Plant Microbe Interact 21(11), 2008
PMID: 18842098
Genomes of the symbiotic nitrogen-fixing bacteria of legumes.
MacLean AM, Finan TM, Sadowsky MJ., Plant Physiol 144(2), 2007
PMID: 17556525
Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a DeltaphoP mutant.
Rodríguez-García A, Barreiro C, Santos-Beneit F, Sola-Landa A, Martín JF., Proteomics 7(14), 2007
PMID: 17623301
The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti.
Glenn SA, Gurich N, Feeney MA, González JE., J Bacteriol 189(19), 2007
PMID: 17644606
Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules.
Pessi G, Ahrens CH, Rehrauer H, Lindemann A, Hauser F, Fischer HM, Hennecke H., Mol Plant Microbe Interact 20(11), 2007
PMID: 17977147
Rhizobial exopolysaccharides: genetic control and symbiotic functions.
Skorupska A, Janczarek M, Marczak M, Mazur A, Król J., Microb Cell Fact 5(), 2006
PMID: 16483356
Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection.
Capela D, Filipe C, Bobik C, Batut J, Bruand C., Mol Plant Microbe Interact 19(4), 2006
PMID: 16610739
Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti.
Pobigaylo N, Wetter D, Szymczak S, Schiller U, Kurtz S, Meyer F, Nattkemper TW, Becker A., Appl Environ Microbiol 72(6), 2006
PMID: 16751548
Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation.
Rinaudi L, Fujishige NA, Hirsch AM, Banchio E, Zorreguieta A, Giordano W., Res Microbiol 157(9), 2006
PMID: 16887339
Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti.
Domínguez-Ferreras A, Pérez-Arnedo R, Becker A, Olivares J, Soto MJ, Sanjuán J., J Bacteriol 188(21), 2006
PMID: 16916894
Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations.
Barsch A, Tellström V, Patschkowski T, Küster H, Niehaus K., Mol Plant Microbe Interact 19(9), 2006
PMID: 16941904
An integrated approach to functional genomics: construction of a novel reporter gene fusion library for Sinorhizobium meliloti.
Cowie A, Cheng J, Sibley CD, Fong Y, Zaheer R, Patten CL, Morton RM, Golding GB, Finan TM., Appl Environ Microbiol 72(11), 2006
PMID: 16963549
RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways.
Jensen V, Löns D, Zaoui C, Bredenbruch F, Meissner A, Dieterich G, Münch R, Häussler S., J Bacteriol 188(24), 2006
PMID: 17028277
Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth.
López-Lara IM, Gao JL, Soto MJ, Solares-Pérez A, Weissenmayer B, Sohlenkamp C, Verroios GP, Thomas-Oates J, Geiger O., Mol Plant Microbe Interact 18(9), 2005
PMID: 16167767
Role of the regulatory gene rirA in the transcriptional response of Sinorhizobium meliloti to iron limitation.
Chao TC, Buhrmester J, Hansmeier N, Pühler A, Weidner S., Appl Environ Microbiol 71(10), 2005
PMID: 16204511
Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains.
Giuntini E, Mengoni A, De Filippo C, Cavalieri D, Aubin-Horth N, Landry CR, Becker A, Bazzicalupo M., BMC Genomics 6(), 2005
PMID: 16283928

55 References

Daten bereitgestellt von Europe PubMed Central.

Regulation of succinoglycan and galactoglucan biosynthesis in Sinorhizobium meliloti.
Becker A, Ruberg S, Baumgarth B, Bertram-Drogatz PA, Quester I, Puhler A., J. Mol. Microbiol. Biotechnol. 4(3), 2002
PMID: 11931545
PhoB-dependent transcriptional activation of the iciA gene during starvation for phosphate in Escherichia coli.
Han JS, Park JY, Lee YS, Thony B, Hwang DS., Mol. Gen. Genet. 262(3), 1999
PMID: 10589831
Cluster analysis and display of genome-wide expression patterns.
Eisen MB, Spellman PT, Brown PO, Botstein D., Proc. Natl. Acad. Sci. U.S.A. 95(25), 1998
PMID: 9843981
Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli.
VanBogelen RA, Olson ER, Wanner BL, Neidhardt FC., J. Bacteriol. 178(15), 1996
PMID: 8755861
Genetic mapping of Rhizobium meliloti.
Meade HM, Signer ER., Proc. Natl. Acad. Sci. U.S.A. 74(5), 1977
PMID: 266730
Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions.
Becker A, Berges H, Krol E, Bruand C, Ruberg S, Capela D, Lauber E, Meilhoc E, Ampe F, de Bruijn FJ, Fourment J, Francez-Charlot A, Kahn D, Kuster H, Liebe C, Puhler A, Weidner S, Batut J., Mol. Plant Microbe Interact. 17(3), 2004
PMID: 15000396
The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses.
Ishige T, Krause M, Bott M, Wendisch VF, Sahm H., J. Bacteriol. 185(15), 2003
PMID: 12867461
Regulation cascade of flagellar expression in Gram-negative bacteria.
Soutourina OA, Bertin PN., FEMS Microbiol. Rev. 27(4), 2003
PMID: 14550943
A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation.
Djordjevic MA, Chen HC, Natera S, Van Noorden G, Menzel C, Taylor S, Renard C, Geiger O, Weiller GF; Sinorhizobium DNA Sequencing Consortium., Mol. Plant Microbe Interact. 16(6), 2003
PMID: 12795377
Starvation-Induced Changes in Motility, Chemotaxis, and Flagellation of Rhizobium meliloti
Wei X, Bauer WD., Appl. Environ. Microbiol. 64(5), 1998
PMID: 9572940
The relation between ppGpp and the PHO regulon in Escherichia coli.
Spira B, Yagil E., Mol. Gen. Genet. 257(4), 1998
PMID: 9529528
A phosphate transport system is required for symbiotic nitrogen fixation by Rhizobium meliloti.
Bardin S, Dan S, Osteras M, Finan TM., J. Bacteriol. 178(15), 1996
PMID: 8755882
Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation.
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP., Nucleic Acids Res. 30(4), 2002
PMID: 11842121
Genetic regulation of nitrogen fixation in rhizobia.
Fischer HM., Microbiol. Rev. 58(3), 1994
PMID: 7968919
Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti.
Lynch D, O'Brien J, Welch T, Clarke P, Cuiv PO, Crosa JH, O'Connell M., J. Bacteriol. 183(8), 2001
PMID: 11274118
Manufacturing DNA microarrays of high spot homogeneity and reduced background signal.
Diehl F, Grahlmann S, Beier M, Hoheisel JD., Nucleic Acids Res. 29(7), 2001
PMID: 11266573
Microbial molecular chaperones.
Lund PA., Adv. Microb. Physiol. 44(), 2001
PMID: 11407116
Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: genome-wide profiling of osmoadaptive gene expression.
Ruberg S, Tian ZX, Krol E, Linke B, Meyer F, Wang Y, Puhler A, Weidner S, Becker A., J. Biotechnol. 106(2-3), 2003
PMID: 14651866
R factor transfer in Rhizobium leguminosarum.
Beringer JE., J. Gen. Microbiol. 84(1), 1974
PMID: 4612098
The composite genome of the legume symbiont Sinorhizobium meliloti.
Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J., Science 293(5530), 2001
PMID: 11474104
Exploring the metabolic and genetic control of gene expression on a genomic scale.
DeRisi JL, Iyer VR, Brown PO., Science 278(5338), 1997
PMID: 9381177
The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti.
Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorholter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J, Golding B, Puhler A., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481431
Expression and regulation of phosphate stress inducible genes in Sinorhizobium meliloti.
Summers ML, Elkins JG, Elliott BA, McDermott TR., Mol. Plant Microbe Interact. 11(11), 1998
PMID: 9805396
The acid-inducible asr gene in Escherichia coli: transcriptional control by the phoBR operon.
Suziedeliene E, Suziedelis K, Garbenciute V, Normark S., J. Bacteriol. 181(7), 1999
PMID: 10094685
Processing of gene expression data generated by quantitative real-time RT-PCR.
Muller PY, Janovjak H, Miserez AR, Dobbie Z., BioTechniques 32(6), 2002
PMID: 12074169
Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones.
Marketon MM, Gronquist MR, Eberhard A, Gonzalez JE., J. Bacteriol. 184(20), 2002
PMID: 12270827
The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products.
Becker A, Ruberg S, Kuster H, Roxlau AA, Keller M, Ivashina T, Cheng HP, Walker GC, Puhler A., J. Bacteriol. 179(4), 1997
PMID: 9023225
Crystallographic and biochemical analyses of the metal-free Haemophilus influenzae Fe3+-binding protein.
Bruns CM, Anderson DS, Vaughan KG, Williams PA, Nowalk AJ, McRee DE, Mietzner TA., Biochemistry 40(51), 2001
PMID: 11747438
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti.
Mendrygal KE, Gonzalez JE., J. Bacteriol. 182(3), 2000
PMID: 10633091
Why is carbonic anhydrase essential to Escherichia coli?
Merlin C, Masters M, McAteer S, Coulson A., J. Bacteriol. 185(21), 2003
PMID: 14563877
Rhizobium (Sinorhizobium) meliloti phn genes: characterization and identification of their protein products.
Parker GF, Higgins TP, Hawkes T, Robson RL., J. Bacteriol. 181(2), 1999
PMID: 9882650

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 15221452
PubMed | Europe PMC

Suchen in

Google Scholar