The use of surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) to monitor the interaction of the plant G-proteins Ms-Rac1 and Ms-Rac4 with GTP

Brecht M, Sewald K, Schiene K, Keen G, Fricke M, Sauer M, Niehaus K (2004)
Journal of Biotechnology 112(1-2): 151-164.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Brecht, M.; Sewald, K.; Schiene, K.; Keen, G.; Fricke, M.; Sauer, MarkusUniBi; Niehaus, KarstenUniBi
Abstract / Bemerkung
Using an RT-PCR approach a cDNA clone, designated Ms-Rac4 and putatively coding for a small GTPase was isolated from Medicago sativa. Ms-Rac4 and the earlier described Ms-Rac1 [Mol Gen. Genet. 263 (2000) 761] belong to the class of GTP-binding Rho of plants (Rop) proteins. At the amino acid level they display all conserved regions that are common to GTP-binding proteins. Phylogenetically both are located in the group la, but within this group they are well-separated. Computed structure models of both proteins revealed a high degree of structural conservation. Particularly the switch I and switch II region are 100% conserved between Ms-Rac1 and Ms-Rac4 and highly conserved as compared to other Rac-like G-proteins. Both GTPases differ in structure within the fourth loop and the fourth helix. GTP-binding properties of the heterologously expressed Ms-Rac1 and Ms-Rac4 was shown by fluorescence resonance energy transfer (FRET) using mantGTP and by surface plasmon resonance (SPR). By this method the specificity of the G-protein/GTP interaction was shown and the inhibitory effect of GTP, EDTA and Mg2+ on the Ms-Rac1 and Ms-Rac4 binding to immobilized GTP was characterized. Ms-Rac1 and Ms-Rac4 exhibited the same affinity to GTP and are similarly affected by GTP, EDTA and Mg2+. Thus, the predicted structural differences do not result in different GTP-binding properties of Ms-Rac1 and Ms-Rac4. (C) 2004 Elsevier B.V. All rights reserved.
Stichworte
Ms-Rac4; Ms-Rac1; medicago sativa; fluorescence; surface plasmon resonance (SPR); GTPases; resonance energy transfer (FRET); GTP-binding; biacore
Erscheinungsjahr
2004
Zeitschriftentitel
Journal of Biotechnology
Band
112
Ausgabe
1-2
Seite(n)
151-164
ISSN
0168-1656
Page URI
https://pub.uni-bielefeld.de/record/1606737

Zitieren

Brecht M, Sewald K, Schiene K, et al. The use of surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) to monitor the interaction of the plant G-proteins Ms-Rac1 and Ms-Rac4 with GTP. Journal of Biotechnology. 2004;112(1-2):151-164.
Brecht, M., Sewald, K., Schiene, K., Keen, G., Fricke, M., Sauer, M., & Niehaus, K. (2004). The use of surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) to monitor the interaction of the plant G-proteins Ms-Rac1 and Ms-Rac4 with GTP. Journal of Biotechnology, 112(1-2), 151-164. https://doi.org/10.1016/j.jbiotec.2004.04.030
Brecht, M., Sewald, K., Schiene, K., Keen, G., Fricke, M., Sauer, Markus, and Niehaus, Karsten. 2004. “The use of surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) to monitor the interaction of the plant G-proteins Ms-Rac1 and Ms-Rac4 with GTP”. Journal of Biotechnology 112 (1-2): 151-164.
Brecht, M., Sewald, K., Schiene, K., Keen, G., Fricke, M., Sauer, M., and Niehaus, K. (2004). The use of surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) to monitor the interaction of the plant G-proteins Ms-Rac1 and Ms-Rac4 with GTP. Journal of Biotechnology 112, 151-164.
Brecht, M., et al., 2004. The use of surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) to monitor the interaction of the plant G-proteins Ms-Rac1 and Ms-Rac4 with GTP. Journal of Biotechnology, 112(1-2), p 151-164.
M. Brecht, et al., “The use of surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) to monitor the interaction of the plant G-proteins Ms-Rac1 and Ms-Rac4 with GTP”, Journal of Biotechnology, vol. 112, 2004, pp. 151-164.
Brecht, M., Sewald, K., Schiene, K., Keen, G., Fricke, M., Sauer, M., Niehaus, K.: The use of surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) to monitor the interaction of the plant G-proteins Ms-Rac1 and Ms-Rac4 with GTP. Journal of Biotechnology. 112, 151-164 (2004).
Brecht, M., Sewald, K., Schiene, K., Keen, G., Fricke, M., Sauer, Markus, and Niehaus, Karsten. “The use of surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) to monitor the interaction of the plant G-proteins Ms-Rac1 and Ms-Rac4 with GTP”. Journal of Biotechnology 112.1-2 (2004): 151-164.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Structure of the C-terminal guanine nucleotide exchange factor module of Trio in an autoinhibited conformation reveals its oncogenic potential.
Bandekar SJ, Arang N, Tully ES, Tang BA, Barton BL, Li S, Gutkind JS, Tesmer JJG., Sci Signal 12(569), 2019
PMID: 30783010
Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection.
Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F., Plant Physiol 159(1), 2012
PMID: 22399646
Survey of the year 2004 commercial optical biosensor literature.
Rich RL, Myszka DG., J Mol Recognit 18(6), 2005
PMID: 16252250

52 References

Daten bereitgestellt von Europe PubMed Central.

Small GTPase 'Rop': molecular switch for plant defense responses.
Agrawal GK, Iwahashi H, Rakwal R., FEBS Lett. 546(2-3), 2003
PMID: 12832035
Protein database searches for multiple alignments.
Altschul SF, Lipman DJ., Proc. Natl. Acad. Sci. U.S.A. 87(14), 1990
PMID: 2196570
Chemoperception of microbial signals in plants
Boller, Annu. Rev. Plant Physiol. Plant Mol. Biol. 46(), 1995
The GTPase superfamily: a conserved switch for diverse cell functions.
Bourne HR, Sanders DA, McCormick F., Nature 348(6297), 1990
PMID: 2122258
The GTPase superfamily: conserved structure and molecular mechanism.
Bourne HR, Sanders DA, McCormick F., Nature 349(6305), 1991
PMID: 1898771
Fluorescence resonance energy transfer.
Clegg RM., Curr. Opin. Biotechnol. 6(1), 1995
PMID: 7534502
Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic, binding site and concentration analysis.
Fagerstam LG, Frostell-Karlsson A, Karlsson R, Persson B, Ronnberg I., J. Chromatogr. 597(1-2), 1992
PMID: 1517343
Real-time DNA binding measurements of the ETS1 recombinant oncoproteins reveal significant kinetic differences between the p42 and p51 isoforms.
Fisher RJ, Fivash M, Casas-Finet J, Erickson JW, Kondoh A, Bladen SV, Fisher C, Watson DK, Papas T., Protein Sci. 3(2), 1994
PMID: 8003962
Energy transport and fluorescence [in German]
Förster, Naturwissenschaften 6(), 1946
Intermolecular energy migration and fluorescence
Förster, Ann. Phys. 2(), 1948
Guanine nucleotide binding properties of the mammalian RalA protein produced in Escherichia coli.
Frech M, Schlichting I, Wittinghofer A, Chardin P., J. Biol. Chem. 265(11), 1990
PMID: 2108160
The effect of Mg2+ on the guanine nucleotide exchange rate of p21N-ras.
Hall A, Self AJ., J. Biol. Chem. 261(24), 1986
PMID: 3525557
NADPH oxidase of neutrophils.
Henderson LM, Chappel JB., Biochim. Biophys. Acta 1273(2), 1996
PMID: 8611594
The crystal structure of human rac1, a member of the rho-family complexed with a GTP analogue.
Hirshberg M, Stockley RW, Dodson G, Webb MR., Nat. Struct. Biol. 4(2), 1997
PMID: 9033596
Kinetic and structural analysis of the Mg(2+)-binding site of the guanine nucleotide-binding protein p21H-ras.
John J, Rensland H, Schlichting I, Vetter I, Borasio GD, Goody RS, Wittinghofer A., J. Biol. Chem. 268(2), 1993
PMID: 8419371
Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology.
Jonsson U, Fagerstam L, Ivarsson B, Johnsson B, Karlsson R, Lundh K, Lofas S, Persson B, Roos H, Ronnberg I., BioTechniques 11(5), 1991
PMID: 1804254
Flow injection ellipsometrie—an in situ method for the study of biomolecular adsorption and interaction at solid surfaces
Jönsson, Colloid Surf. (A) 13(), 1985
The small GTP-binding protein rac is a regulator of cell death in plants.
Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M, Satoh H, Shimamoto K., Proc. Natl. Acad. Sci. U.S.A. 96(19), 1999
PMID: 10485927
A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs.
Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C., Plant Cell 10(2), 1998
PMID: 9490748
Radiative decay of non-radiative surface plasmons excited by light
Kretschmann, Z. Naturforsch. A 23(), 1968
Surface plasmon resonance for gas detection and biosensing
Liedberg, Sens. Actuator A Phys. 4(), 1983
The oxidative burst in plant defence: function and signal transduction
Low, Physiol. Plant. 96(), 1996
Kinetic analysis of the interaction between HIV-1 protease and inhibitors using optical biosensor technology.
Markgren PO, Hamalainen M, Danielson UH., Anal. Biochem. 279(1), 2000
PMID: 10683232
Kinetic analysis of DNA binding by the c-Myb DNA-binding domain using surface plasmon resonance.
Oda M, Furukawa K, Sarai A, Nakamura H., FEBS Lett. 454(3), 1999
PMID: 10431824
Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms.
Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T., Proc. Natl. Acad. Sci. U.S.A. 86(8), 1989
PMID: 2565038
Structure of small G proteins and their regulators.
Paduch M, Jelen F, Otlewski J., Acta Biochim. Pol. 48(4), 2001
PMID: 11995995
Translocation of Rac correlates with NADPH oxidase activation. Evidence for equimolar translocation of oxidase components.
Quinn MT, Evans T, Loetterle LR, Jesaitis AJ, Bokoch GM., J. Biol. Chem. 268(28), 1993
PMID: 8407934
Low-molecular-weight GTP-binding proteins and leucocyte signal transduction
Quinn, J. Leucocyte Biol. 58(), 1995
Fluorescent guanine nucleotide analogs and G protein activation.
Remmers AE, Posner R, Neubig RR., J. Biol. Chem. 269(19), 1994
PMID: 8188654
A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley.
Schultheiss H, Dechert C, Kogel KH, Huckelhoven R., Plant Physiol. 128(4), 2002
PMID: 11950993
SWISS-MODEL: An automated protein homology-modeling server.
Schwede T, Kopp J, Guex N, Peitsch MC., Nucleic Acids Res. 31(13), 2003
PMID: 12824332
Protein structure computing in the genomic era.
Schwede T, Diemand A, Guex N, Peitsch MC., Res. Microbiol. 151(2), 2000
PMID: 10865955
Kinetics of interaction of Rab5 and Rab7 with nucleotides and magnesium ions.
Simon I, Zerial M, Goody RS., J. Biol. Chem. 271(34), 1996
PMID: 8702787
Plant GTPases: the Rhos in bloom.
Valster AH, Hepler PK, Chernoff J., Trends Cell Biol. 10(4), 2000
PMID: 10740268
Cloning and characterization of rac-like cDNAs from Arabidopsis thaliana.
Winge P, Brembu T, Bones AM., Plant Mol. Biol. 35(4), 1997
PMID: 9349271
Oxidative burst: an early plant response to pathogen infection.
Wojtaszek P., Biochem. J. 322 ( Pt 3)(), 1997
PMID: 9148737

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 15288950
PubMed | Europe PMC

Suchen in

Google Scholar