Controlled three-dimensional immobilization of biomolecules on chemically patterned surfaces

Biebricher A, Paul A, Tinnefeld P, Gölzhäuser A, Sauer M (2004)

Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
; ; ; ;
Abstract / Bemerkung
We used electron-beam lithography to fabricate chemical nanostructures, i.e, amino groups in aromatic self-assembled monolayers (SAMs) on gold surfaces. The amino groups are utilized as reactive species for mild covalent attachment of fluorescently labeled proteins. Since non-radiative energy transfer results in strong quenching of fluorescent dyes in the vicinity of the metal surfaces, different labeling strategies were investigated. Spacers of varying length were introduced between the gold surface and the fluorescently labeled proteins. First, streptavidin was directly coupled to the amino groups of the SAMs via a glutaraldehyde linker and fluorescently labeled biotin (X-Biotin) was added, resulting in a distance of similar to2 nm between the dyes and the surface. Scanning confocal fluorescence images show that efficient energy transfer from the dye to the surface occurs, which is reflected in poor signal-to-background (S/B) ratios of similar to1. Coupling of a second streptavidin layer increases the S/B-ratio only slightly to similar to2. The S/B-ratio of the fluorescence signals could be further increased to similar to4 by coupling of an additional fluorescently labeled antibody layer. Finally, we introduced tetraethylenepentamine as functional spacer molecule to diminish fluorescence quenching by the surface. We demonstrate that the use of this spacer in combination with multiple antibody layers enables the controlled fabrication of highly fluorescent three-dimensional nanostructures with S/B-ratios of >20. The presented technique might be used advantageously for the controlled three-dimensional immobilization of single protein or DNA molecules and the well-defined assembly of protein complexes. (C) 2004 Elsevier B.V. All rights reserved.


Biebricher A, Paul A, Tinnefeld P, Gölzhäuser A, Sauer M. Controlled three-dimensional immobilization of biomolecules on chemically patterned surfaces. JOURNAL OF BIOTECHNOLOGY. 2004;112(1-2):97-107.
Biebricher, A., Paul, A., Tinnefeld, P., Gölzhäuser, A., & Sauer, M. (2004). Controlled three-dimensional immobilization of biomolecules on chemically patterned surfaces. JOURNAL OF BIOTECHNOLOGY, 112(1-2), 97-107. doi:10.1016/j.jbiotec.2004.03.019
Biebricher, A., Paul, A., Tinnefeld, P., Gölzhäuser, A., and Sauer, M. (2004). Controlled three-dimensional immobilization of biomolecules on chemically patterned surfaces. JOURNAL OF BIOTECHNOLOGY 112, 97-107.
Biebricher, A., et al., 2004. Controlled three-dimensional immobilization of biomolecules on chemically patterned surfaces. JOURNAL OF BIOTECHNOLOGY, 112(1-2), p 97-107.
A. Biebricher, et al., “Controlled three-dimensional immobilization of biomolecules on chemically patterned surfaces”, JOURNAL OF BIOTECHNOLOGY, vol. 112, 2004, pp. 97-107.
Biebricher, A., Paul, A., Tinnefeld, P., Gölzhäuser, A., Sauer, M.: Controlled three-dimensional immobilization of biomolecules on chemically patterned surfaces. JOURNAL OF BIOTECHNOLOGY. 112, 97-107 (2004).
Biebricher, A., Paul, A., Tinnefeld, P., Gölzhäuser, Armin, and Sauer, Markus. “Controlled three-dimensional immobilization of biomolecules on chemically patterned surfaces”. JOURNAL OF BIOTECHNOLOGY 112.1-2 (2004): 97-107.

24 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Dendrimer-based Uneven Nanopatterns to Locally Control Surface Adhesiveness: A Method to Direct Chondrogenic Differentiation.
Casanellas I, Lagunas A, Tsintzou I, Vida Y, Collado D, Pérez-Inestrosa E, Rodríguez-Pereira C, Magalhaes J, Gorostiza P, Andrades JA, Becerra J, Samitier J., J Vis Exp (131), 2018
PMID: 29443025
Carbon Nanomembranes.
Turchanin A, Gölzhäuser A., Adv Mater 28(29), 2016
PMID: 27281234
Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy.
Su L, Lu G, Kenens B, Rocha S, Fron E, Yuan H, Chen C, Van Dorpe P, Roeffaers MB, Mizuno H, Hofkens J, Hutchison JA, Uji-I H., Nat Commun 6(), 2015
PMID: 25687887
Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy.
Lin H, Centeno SP, Su L, Kenens B, Rocha S, Sliwa M, Hofkens J, Uji-i H., Chemphyschem 13(4), 2012
PMID: 22183928
Ultrathin conductive carbon nanomembranes as support films for structural analysis of biological specimens.
Rhinow D, Vonck J, Schranz M, Beyer A, Gölzhäuser A, Hampp N., Phys Chem Chem Phys 12(17), 2010
PMID: 20407705
Protein resistant oligo(ethylene glycol) terminated self-assembled monolayers of thiols on gold by vapor deposition in vacuum.
Kankate L, Werner U, Turchanin A, Gölzhäuser A, Grossmann H, Tampé R., Biointerphases 5(2), 2010
PMID: 20831346
Janus nanomembranes: a generic platform for chemistry in two dimensions.
Zheng Z, Nottbohm CT, Turchanin A, Muzik H, Beyer A, Heilemann M, Sauer M, Gölzhäuser A., Angew Chem Int Ed Engl 49(45), 2010
PMID: 20886488
Local probe oxidation of self-assembled monolayers: templates for the assembly of functional nanostructures.
Wouters D, Hoeppener S, Schubert US., Angew Chem Int Ed Engl 48(10), 2009
PMID: 19165851
Chemically functionalized carbon nanosieves with 1-nm thickness.
Schnietz M, Turchanin A, Nottbohm CT, Beyer A, Solak HH, Hinze P, Weimann T, Gölzhäuser A., Small 5(23), 2009
PMID: 19787678
Multivalent binding of small guest molecules and proteins to molecular printboards inside microchannels.
Ludden MJ, Ling XY, Gang T, Bula WP, Gardeniers HJ, Reinhoudt DN, Huskens J., Chemistry 14(1), 2008
PMID: 18000928
Anchoring of histidine-tagged proteins to molecular printboards: self-assembly, thermodynamic modeling, and patterning.
Ludden MJ, Mulder A, Schulze K, Subramaniam V, Tampé R, Huskens J., Chemistry 14(7), 2008
PMID: 18189256
Novel carbon nanosheets as support for ultrahigh-resolution structural analysis of nanoparticles.
Nottbohm CT, Beyer A, Sologubenko AS, Ennen I, Hütten A, Rösner H, Eck W, Mayer J, Gölzhäuser A., Ultramicroscopy 108(9), 2008
PMID: 18406532
Hemocompatibility of poly(ether imide) membranes functionalized with carboxylic groups.
Tzoneva R, Seifert B, Albrecht W, Richau K, Groth T, Lendlein A., J Mater Sci Mater Med 19(10), 2008
PMID: 18452029
Fully cross-linked and chemically patterned self-assembled monolayers.
Beyer A, Godt A, Amin I, Nottbohm CT, Schmidt C, Zhao J, Gölzhäuser A., Phys Chem Chem Phys 10(48), 2008
PMID: 19060967
Surface engineering approaches to micropattern surfaces for cell-based assays.
Falconnet D, Csucs G, Grandin HM, Textor M., Biomaterials 27(16), 2006
PMID: 16458351
Building three-dimensional nanostructures with active enzymes by surface templated layer-by-layer assembly.
Rauf S, Zhou D, Abell C, Klenerman D, Kang DJ., Chem Commun (Camb) (16), 2006
PMID: 16609783

39 References

Daten bereitgestellt von Europe PubMed Central.

Printing patterns of proteins
Bernard, Langmuir 14(), 1998
Writing with DNA and protein using a nanopipet for controlled delivery.
Bruckbauer A, Ying L, Rothery AM, Zhou D, Shevchuk AI, Abell C, Korchev YE, Klenerman D., J. Am. Chem. Soc. 124(30), 2002
PMID: 12137530
Spectroscopic study and evaluation of red-absorbing fluorescent dyes.
Buschmann V, Weston KD, Sauer M., Bioconjug. Chem. 14(1), 2003
PMID: 12526709

Analysis of various sequence-specific triplexes by electron and atomic force microscopies.
Cherny DI, Fourcade A, Svinarchuk F, Nielsen PE, Malvy C, Delain E., Biophys. J. 74(2 Pt 1), 1998
PMID: 9533714
Biotin and digoxigenin as labels for light and electron microscopy in situ hybridization probes: where do we stand?
Chevalier J, Yi J, Michel O, Tang XM., J. Histochem. Cytochem. 45(4), 1997
PMID: 9111227
Generation of surface amino groups on aromatic self-assembled monolayers by low energy electron beams: a first step towards chemical lithography
Eck, Adv. Mater. 13(), 2000
; Electron induced cross-linking of aromatic self-assembled monolayers: negative resists for nanolithography
Geyer, Appl. Phys. Lett. 75(), 1999
Electron induced chemical nanolithography with self-assembled monolayers
Geyer, J. Vac. Sci. Technol. B 19(), 2001
Patterning self-assembled monolayers with electrons
Gölzhäuser, J. Vac. Sci. Technol. B 18(), 2000
Chemical nanolithography with electron beams
Gölzhäuser, Adv. Mater. 13(), 2001
Electron-beam patterning of amine-functionalized self-assembled monolayers
Harnett, Appl. Phys. Lett. 76(), 2000

Growth of a dense polymer brush layer from solution
Himmelhaus, Europhys. Lett. 64(), 2003
Chain length effect on the structure and photoelectrochemical properties of self-assembled monolayers of porphyrins on gold electrodes
Imahori, J. Phys. Chem. B 104(), 2000
Patterned protein layers on solid substrates by thin stamp microcontact printing
James, Langmuir 14(), 1998
Classical aspects of energy transfer in molecular systems
Kuhn, J. Chem. Phys. 53(), 1970
Nanostructuring of silicon by electron-beam lithography of self-assembled hydroxybiphenyl monolayers
Küller, Appl. Phys. Lett. 82(), 2003
Enhanced Dye Fluorescence over Silver Island Films: Analysis of Distance Dependence
Kummerlen, Mol. Phy. 80(), 1993
Plasma etching with self-assembled monolayer masks for nanostrucutre fabrication
Lercel, J. Vac. Sci. Technol. B 14(), 1996
Sub-10nm lithography with self-assembled monolayers
Lercel, Appl. Phys. Lett. 68(), 1996
Tailored substrates for studies of attached cell culture.
Mrksich M., Cell. Mol. Life Sci. 54(7), 1998
PMID: 9711232
Adsorption of bifunctional organic disulfides on gold surfaces
Nuzzo, J. Am. Chem. Soc. 105(), 1983
Functionalized surfaces of mixed alkanethiols on gold as a platform for oligonucleotide microarrays
Riepl, Langmuir 18(), 2002
Organized monolayers by adsorption. 1. formation and structure of oleophobic mixed monolayers on solid surfaces
Sagiv, J. Am. Chem. Soc. 102(), 1980
Structure and growth of self-assembling monolayers
Schreiber, Prog. Surf. Sci. 65(), 2000
Photophysical dynamics of single dye molecules studied by spectrally-resolved fluorescence lifetime imaging microscopy (SFLIM)
Tinnefeld, J. Phys. Chem. A 105(), 2001
Grafting of alkanethiol-terminated poly (ethylene glycol) on gold
Tokumitsu, Langmuir 18(), 2002
Formation and Structure of Self-Assembled Monolayers.
Ulman A., Chem. Rev. 96(4), 1996
PMID: 11848802
Structural origins of high-affinity biotin binding to streptavidin.
Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR., Science 243(4887), 1989
PMID: 2911722
Soft lithography in biology and biochemistry.
Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE., Annu Rev Biomed Eng 3(), 2001
PMID: 11447067
Electronic energy transfer from pyrazine to a silver(111) surface between 10 and 400Å
Whitmore, J. Chem. Phys. 73(), 1982
Integration of Layered Redox Proteins and Conductive Supports for Bioelectronic Applications.
Willner I I, Katz E., Angew. Chem. Int. Ed. Engl. 39(7), 2000
PMID: 10767010
Direct haplotyping of kilobase-size DNA using carbon nanotube probes.
Woolley AT, Guillemette C, Li Cheung C, Housman DE, Lieber CM., Nat. Biotechnol. 18(7), 2000
PMID: 10888845
Programmable delivery of DNA through a nanopipet.
Ying L, Bruckbauer A, Rothery AM, Korchev YE, Klenerman D., Anal. Chem. 74(6), 2002
PMID: 11922307
Single molecule imaging of fluorescently labeled proteins on metal by surface plasmons in aqueous solution
Yokota, Phys. Rev. Lett. 80(), 1998
Building three-dimensional surface biological assemblies on the nanometer scale
Zhou, Nano Lett. 3(), 2003


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 15288945
PubMed | Europe PMC

Suchen in

Google Scholar