Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti

Puskas LG, Nagy ZB, Kelemen JZ, Rüberg S, Bodogai M, Becker A, Dusha I (2004)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Puskas, L. G.; Nagy, Z. B.; Kelemen, J. Z.; Rüberg, Silvia; Bodogai, M.; Becker, Anke; Dusha, I.
Abstract / Bemerkung
A mutation in the second gene in the ntrPR operon results in increased expression of nodulation (nod) and nitrogen fixation (nif) genes in Sinorhizobium meliloti. Since this pleiotropic effect is particularly pronounced in the presence of external combined nitrogen, a nitrogen regulatory function has been suggested for NtrR. To identify the complete set of protein-coding genes influenced by loss of ntrR function, microarray hybridizations were carried out to compare transcript levels in the wild type and mutant strains grown under aerobic and microaerobic conditions. Of the 6207 genes examined, representing the entire genome of S. meliloti, 7% exhibited altered expression: 4.5% of the genes are affected under oxic, 2.5% under microoxic conditions. 0.4% of all the genes are affected under both oxygen concentrations. A microoxic environment is required for the induction of genes related to symbiotic functions but results in the down-regulation of other (e.g. metabolic) functions. When the alterations in transcription levels at low oxygen concentration in the mutant strain were compared to those of the wild type, a modulating effect of the ntrR mutation was observed. For example, symbiotic nif/fix genes were induced in both strains, but the level of induction was higher in the ntrR mutant. In contrast, genes related to transcription/translation functions were down-regulated in both strains, and the effect was greater in the wild-type strain than in the ntrR mutant. A relatively wide range of functions was affected by this modulating influence, suggesting that ntrR is not a nitrogen regulatory gene. Since genes encoding various unrelated functions were affected, we propose that NtrR may either interfere with general regulatory mechanisms, such as phosphorylation/dephosphorylation, or may influence RNA stability.
microarray; nitrogen fixation; transcriptome analysis; microaerobiosis; ntrR gene
Page URI


Puskas LG, Nagy ZB, Kelemen JZ, et al. Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti. MOLECULAR GENETICS AND GENOMICS. 2004;272(3):275-289.
Puskas, L. G., Nagy, Z. B., Kelemen, J. Z., Rüberg, S., Bodogai, M., Becker, A., & Dusha, I. (2004). Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti. MOLECULAR GENETICS AND GENOMICS, 272(3), 275-289. https://doi.org/10.1007/s00438-004-1051-3
Puskas, L. G., Nagy, Z. B., Kelemen, J. Z., Rüberg, Silvia, Bodogai, M., Becker, Anke, and Dusha, I. 2004. “Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti”. MOLECULAR GENETICS AND GENOMICS 272 (3): 275-289.
Puskas, L. G., Nagy, Z. B., Kelemen, J. Z., Rüberg, S., Bodogai, M., Becker, A., and Dusha, I. (2004). Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti. MOLECULAR GENETICS AND GENOMICS 272, 275-289.
Puskas, L.G., et al., 2004. Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti. MOLECULAR GENETICS AND GENOMICS, 272(3), p 275-289.
L.G. Puskas, et al., “Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti”, MOLECULAR GENETICS AND GENOMICS, vol. 272, 2004, pp. 275-289.
Puskas, L.G., Nagy, Z.B., Kelemen, J.Z., Rüberg, S., Bodogai, M., Becker, A., Dusha, I.: Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti. MOLECULAR GENETICS AND GENOMICS. 272, 275-289 (2004).
Puskas, L. G., Nagy, Z. B., Kelemen, J. Z., Rüberg, Silvia, Bodogai, M., Becker, Anke, and Dusha, I. “Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti”. MOLECULAR GENETICS AND GENOMICS 272.3 (2004): 275-289.

15 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Can stress response genes be used to improve the symbiotic performance of rhizobia?
da-Silva JR, Alexandre A, Brígido C, Oliveira S., AIMS Microbiol 3(3), 2017
PMID: 31294167
The Symbiotic Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the clpB Chaperone Gene.
Paço A, Brígido C, Alexandre A, Mateos PF, Oliveira S., PLoS One 11(2), 2016
PMID: 26845770
A vapBC-type toxin-antitoxin module of Sinorhizobium meliloti influences symbiotic efficiency and nodule senescence of Medicago sativa.
Lipuma J, Cinege G, Bodogai M, Oláh B, Kiers A, Endre G, Dupont L, Dusha I., Environ Microbiol 16(12), 2014
PMID: 25156344
Ribonucleases in bacterial toxin-antitoxin systems.
Cook GM, Robson JR, Frampton RA, McKenzie J, Przybilski R, Fineran PC, Arcus VL., Biochim Biophys Acta 1829(6-7), 2013
PMID: 23454553
A ClpB chaperone knockout mutant of Mesorhizobium ciceri shows a delay in the root nodulation of chickpea plants.
Brígido C, Robledo M, Menéndez E, Mateos PF, Oliveira S., Mol Plant Microbe Interact 25(12), 2012
PMID: 23134119
The PIN-domain ribonucleases and the prokaryotic VapBC toxin-antitoxin array.
Arcus VL, McKenzie JL, Robson J, Cook GM., Protein Eng Des Sel 24(1-2), 2011
PMID: 21036780
Signals of growth regulation in bacteria.
Hayes CS, Low DA., Curr Opin Microbiol 12(6), 2009
PMID: 19854099
An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum.
Chang WS, Franck WL, Cytryn E, Jeong S, Joshi T, Emerich DW, Sadowsky MJ, Xu D, Stacey G., Mol Plant Microbe Interact 20(10), 2007
PMID: 17918631
Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection.
Capela D, Filipe C, Bobik C, Batut J, Bruand C., Mol Plant Microbe Interact 19(4), 2006
PMID: 16610739
The ntrPR operon of Sinorhizobium meliloti is organized and functions as a toxin-antitoxin module.
Bodogai M, Ferenczi S, Bashtovyy D, Miclea P, Papp P, Dusha I., Mol Plant Microbe Interact 19(7), 2006
PMID: 16838793
Revised structure of the AbrB N-terminal domain unifies a diverse superfamily of putative DNA-binding proteins.
Bobay BG, Andreeva A, Mueller GA, Cavanagh J, Murzin AG., FEBS Lett 579(25), 2005
PMID: 16223496
The proteasome inhibitor MG132 protects against acute pancreatitis.
Letoha T, Somlai C, Takács T, Szabolcs A, Rakonczay Z, Jármay K, Szalontai T, Varga I, Kaszaki J, Boros I, Duda E, Hackler L, Kurucz I, Penke B., Free Radic Biol Med 39(9), 2005
PMID: 16214030

54 References

Daten bereitgestellt von Europe PubMed Central.

Transcriptome analysis of Sinorhizobium meliloti during symbiosis.
Ampe F, Kiss E, Sabourdy F, Batut J., Genome Biol. 4(2), 2003
PMID: 12620125
A compartmentalized regulator of developmental gene expression in Bacillus subtilis.
Bagyan I, Hobot J, Cutting S., J. Bacteriol. 178(15), 1996
PMID: 8755877
A model for the catabolism of rhizopine in Rhizobium leguminosarum involves a ferredoxin oxygenase complex and the inositol degradative pathway.
Bahar M, de Majnik J, Wexler M, Fry J, Poole PS, Murphy PJ., Mol. Plant Microbe Interact. 11(11), 1998
PMID: 9805393
A phosphate transport system is required for symbiotic nitrogen fixation by Rhizobium meliloti.
Bardin S, Dan S, Osteras M, Finan TM., J. Bacteriol. 178(15), 1996
PMID: 8755882
Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid.
Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481432
Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions.
Becker A, Berges H, Krol E, Bruand C, Ruberg S, Capela D, Lauber E, Meilhoc E, Ampe F, de Bruijn FJ, Fourment J, Francez-Charlot A, Kahn D, Kuster H, Liebe C, Puhler A, Weidner S, Batut J., Mol. Plant Microbe Interact. 17(3), 2004
PMID: 15000396
Development of Sinorhizobium meliloti pilot macroarrays for transcriptome analysis.
Berges H, Lauber E, Liebe C, Batut J, Kahn D, de Bruijn FJ, Ampe F., Appl. Environ. Microbiol. 69(2), 2003
PMID: 12571049
Isolation and characterization of an ndvB locus from Rhizobium fredii.
Bhagwat AA, Tully RE, Keister DL., Mol. Microbiol. 6(15), 1992
PMID: 1406255
Synthesis of glycerophosphorylated cyclic beta-(1,2)-glucans by Rhizobium meliloti ndv mutants.
Breedveld MW, Yoo JS, Reinhold VN, Miller KJ., J. Bacteriol. 176(4), 1994
PMID: 8106315
Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021.
Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dreano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Puhler A, Purnelle B, Ramsperger U, Renard C, Thebault P, Vandenbol M, Weidner S, Galibert F., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481430
A new family of high-affinity ABC manganese and zinc permeases.
Claverys JP., Res. Microbiol. 152(3-4), 2001
PMID: 11421271
PIN domains in nonsense-mediated mRNA decay and RNAi.
Clissold PM, Ponting CP., Curr. Biol. 10(24), 2000
PMID: 11137022
Transcriptional effects of chronic Akt activation in the heart.
Cook SA, Matsui T, Li L, Rosenzweig A., J. Biol. Chem. 277(25), 2002
PMID: 11956204
Exploring the metabolic and genetic control of gene expression on a genomic scale.
DeRisi JL, Iyer VR, Brown PO., Science 278(5338), 1997
PMID: 9381177

A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation.
Djordjevic MA, Chen HC, Natera S, Van Noorden G, Menzel C, Taylor S, Renard C, Geiger O, Weiller GF; Sinorhizobium DNA Sequencing Consortium., Mol. Plant Microbe Interact. 16(6), 2003
PMID: 12795377
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856

Dudoit, Statistica Sinica 12(), 2002

Dusha, Mol Gen Genet 219(), 1989

The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti.
Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorholter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J, Golding B, Puhler A., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481431
One of two hemN genes in Bradyrhizobium japonicum is functional during anaerobic growth and in symbiosis.
Fischer HM, Velasco L, Delgado MJ, Bedmar EJ, Scharen S, Zingg D, Gottfert M, Hennecke H., J. Bacteriol. 183(4), 2001
PMID: 11157943
Whole-genome random sequencing and assembly of Haemophilus influenzae Rd.
Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM., Science 269(5223), 1995
PMID: 7542800
A functional myo-inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti.
Galbraith MP, Feng SF, Borneman J, Triplett EW, de Bruijn FJ, Rossbach S., Microbiology (Reading, Engl.) 144 ( Pt 10)(), 1998
PMID: 9802033
The composite genome of the legume symbiont Sinorhizobium meliloti.
Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J., Science 293(5530), 2001
PMID: 11474104
Identification and analysis of the dissimilatory nitrous oxide reduction genes, nosRZDFY, of Rhizobium meliloti.
Holloway P, McCormick W, Watson RJ, Chan YK., J. Bacteriol. 178(6), 1996
PMID: 8626275
Isolation of Neisseria gonorrhoeae mutants that show enhanced trafficking across polarized T84 epithelial monolayers.
Hopper S, Wilbur JS, Vasquez BL, Larson J, Clary S, Mehr IJ, Seifert HS, So M., Infect. Immun. 68(2), 2000
PMID: 10639460

Molecular characterization of a genomic region associated with virulence in Dichelobacter nodosus.
Katz ME, Strugnell RA, Rood JI., Infect. Immun. 60(11), 1992
PMID: 1398971

Kondorosi, Mol Gen Genet 193(), 1984
Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell.
Makarova KS, Aravind L, Galperin MY, Grishin NV, Tatusov RL, Wolf YI, Koonin EV., Genome Res. 9(7), 1999
PMID: 10413400
Genetic mapping of Rhizobium meliloti.
Meade HM, Signer ER., Proc. Natl. Acad. Sci. U.S.A. 74(5), 1977
PMID: 266730
Dis3, implicated in mitotic control, binds directly to Ran and enhances the GEF activity of RCC1.
Noguchi E, Hayashi N, Azuma Y, Seki T, Nakamura M, Nakashima N, Yanagida M, He X, Mueller U, Sazer S, Nishimoto T., EMBO J. 15(20), 1996
PMID: 8896453
Mutation in the ntrR gene, a member of the vap gene family, increases the symbiotic efficiency of Sinorhizobium meliloti.
Olah B, Kiss E, Gyorgypal Z, Borzi J, Cinege G, Csanadi G, Batut J, Kondorosi A, Dusha I., Mol. Plant Microbe Interact. 14(7), 2001
PMID: 11437262
Mutations in sit B and sit D genes affect manganese-growth requirements in Sinorhizobium meliloti.
Platero RA, Jaureguy M, Battistoni FJ, Fabiano ER., FEMS Microbiol. Lett. 218(1), 2003
PMID: 12583899
RNA amplification results in reproducible microarray data with slight ratio bias.
Puskas LG, Zvara A, Hackler L Jr, Van Hummelen P., BioTechniques 32(6), 2002
PMID: 12074164
Plasmid maintenance functions of the large virulence plasmid of Shigella flexneri.
Radnedge L, Davis MA, Youngren B, Austin SJ., J. Bacteriol. 179(11), 1997
PMID: 9171415
Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: genome-wide profiling of osmoadaptive gene expression.
Ruberg S, Tian ZX, Krol E, Linke B, Meyer F, Wang Y, Puhler A, Weidner S, Becker A., J. Biotechnol. 106(2-3), 2003
PMID: 14651866
Non-heme iron oxygenases.
Ryle MJ, Hausinger RP., Curr Opin Chem Biol 6(2), 2002
PMID: 12039004
Oxygen as a key developmental regulator of Rhizobium meliloti N2-fixation gene expression within the alfalfa root nodule.
Soupene E, Foussard M, Boistard P, Truchet G, Batut J., Proc. Natl. Acad. Sci. U.S.A. 92(9), 1995
PMID: 7731979
Root nodulation and infection factors produced by rhizobial bacteria.
Spaink HP., Annu. Rev. Microbiol. 54(), 2000
PMID: 11018130
The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein.
Strauch MA, Spiegelman GB, Perego M, Johnson WC, Burbulys D, Hoch JA., EMBO J. 8(5), 1989
PMID: 2504584
Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation.
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP., Nucleic Acids Res. 30(4), 2002
PMID: 11842121
Luteolin and GroESL modulate in vitro activity of NodD.
Yeh KC, Peck MC, Long SR., J. Bacteriol. 184(2), 2002
PMID: 11751831

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 15365818
PubMed | Europe PMC

Suchen in

Google Scholar