Proteomic approach: Identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches

Colditz F, Nyamsuren O, Niehaus K, Eubel H, Braun HP, Krajinski F (2004)
Plant Molecular Biology 55(1): 109-120.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Colditz, F.; Nyamsuren, O.; Niehaus, KarstenUniBi; Eubel, H.; Braun, H. P.; Krajinski, F.
Abstract / Bemerkung
The legume root rot disease caused by the oomycete pathogen Aphanomyces euteiches is one major yield reducing factor in legume crop production. A comparative proteomic approach was carried out in order to identify proteins of the model legume Medicago truncatula which are regulated after an infection with A. euteiches. Several proteins were identified by two dimensional gel electrophoresis to be differentially expressed after pathogen challenge. Densitometric evaluation of expression values showed different regulation during the time-course analysed. Proteins regulated during the infection were identified by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Among the differentially expressed proteins, two encoded putative cell wall proteins and two were designated as small heat shock proteins. Furthermore, an isoform of the chalcone-O-methyltransferase was found to be increased in infected roots. The majority of induced proteins belonged to the family of class 10 of pathogenesis related proteins (PR10). Previously, various PR10-like proteins have been shown to be regulated by general stress or abscisic acid (ABA). Therefore, these proteins were further investigated concerning their regulation in response to drought stress and exogenous ABA-application. Complex regulation patterns were identified: three of the A. euteiches-induced PR10-like proteins were also induced by exogenous ABA-but none of them is induced after drought stress. In contrast, three of these proteins are down-regulated by drought stress. Hence, the strong expression of different PR10-family members and their regulation profiles indicates that this set of proteins plays a major role during root adaptations to various stress conditions.
Stichworte
Medicago truncatula; Aphanomyces euteiches; PR10
Erscheinungsjahr
2004
Zeitschriftentitel
Plant Molecular Biology
Band
55
Ausgabe
1
Seite(n)
109-120
ISSN
0167-4412
eISSN
1573-5028
Page URI
https://pub.uni-bielefeld.de/record/1605813

Zitieren

Colditz F, Nyamsuren O, Niehaus K, Eubel H, Braun HP, Krajinski F. Proteomic approach: Identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Molecular Biology. 2004;55(1):109-120.
Colditz, F., Nyamsuren, O., Niehaus, K., Eubel, H., Braun, H. P., & Krajinski, F. (2004). Proteomic approach: Identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Molecular Biology, 55(1), 109-120. https://doi.org/10.1007/s11103-004-0499-1
Colditz, F., Nyamsuren, O., Niehaus, Karsten, Eubel, H., Braun, H. P., and Krajinski, F. 2004. “Proteomic approach: Identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches”. Plant Molecular Biology 55 (1): 109-120.
Colditz, F., Nyamsuren, O., Niehaus, K., Eubel, H., Braun, H. P., and Krajinski, F. (2004). Proteomic approach: Identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Molecular Biology 55, 109-120.
Colditz, F., et al., 2004. Proteomic approach: Identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Molecular Biology, 55(1), p 109-120.
F. Colditz, et al., “Proteomic approach: Identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches”, Plant Molecular Biology, vol. 55, 2004, pp. 109-120.
Colditz, F., Nyamsuren, O., Niehaus, K., Eubel, H., Braun, H.P., Krajinski, F.: Proteomic approach: Identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Molecular Biology. 55, 109-120 (2004).
Colditz, F., Nyamsuren, O., Niehaus, Karsten, Eubel, H., Braun, H. P., and Krajinski, F. “Proteomic approach: Identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches”. Plant Molecular Biology 55.1 (2004): 109-120.

63 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Proteomic analysis of the response of Funnelifor mismosseae/Medicago sativa to atrazine stress.
Sui X, Wu Q, Chang W, Fan X, Song F., BMC Plant Biol 18(1), 2018
PMID: 30463523
Differential proteomics analysis of Frankliniella occidentalis immune response after infection with Tomato spotted wilt virus (Tospovirus).
Ogada PA, Kiirika LM, Lorenz C, Senkler J, Braun HP, Poehling HM., Dev Comp Immunol 67(), 2017
PMID: 27810283
Legume proteomics: Progress, prospects, and challenges.
Rathi D, Gayen D, Gayali S, Chakraborty S, Chakraborty N., Proteomics 16(2), 2016
PMID: 26563903
Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry.
Singh PK, Shrivastava N, Chaturvedi K, Sharma B, Bhagyawant SS., Biochem Res Int 2016(), 2016
PMID: 27144024
Molecular Signals Controlling the Inhibition of Nodulation by Nitrate in Medicago truncatula.
van Noorden GE, Verbeek R, Dinh QD, Jin J, Green A, Ng JL, Mathesius U., Int J Mol Sci 17(7), 2016
PMID: 27384556
Proteomic dissection of plant responses to various pathogens.
Fang X, Chen J, Dai L, Ma H, Zhang H, Yang J, Wang F, Yan C., Proteomics 15(9), 2015
PMID: 25641875
Plant stomatal closure improves aphid feeding under elevated CO2
Sun Y, Guo H, Yuan L, Wei J, Zhang W, Ge F., Global change biology. 21(7), 2015
PMID: IND603427998
Identification of proteins of altered abundance in oil palm infected with Ganoderma boninense.
Al-Obaidi JR, Mohd-Yusuf Y, Razali N, Jayapalan JJ, Tey CC, Md-Noh N, Junit SM, Othman RY, Hashim OH., Int J Mol Sci 15(3), 2014
PMID: 24663087
Brassica napus seed endosperm - metabolism and signaling in a dead end tissue.
Lorenz C, Rolletschek H, Sunderhaus S, Braun HP., J Proteomics 108(), 2014
PMID: 24906024
Comparative proteomic analysis of early somatic and zygotic embryogenesis in Theobroma cacao L.
Noah AM, Niemenak N, Sunderhaus S, Haase C, Omokolo DN, Winkelmann T, Braun HP., J Proteomics 78(), 2013
PMID: 23178419
Proteomics-based investigation of salt-responsive mechanisms in plant roots.
Zhao Q, Zhang H, Wang T, Chen S, Dai S., J Proteomics 82(), 2013
PMID: 23385356
The need for agriculture phenotyping: "moving from genotype to phenotype".
Boggess MV, Lippolis JD, Hurkman WJ, Fagerquist CK, Briggs SP, Gomes AV, Righetti PG, Bala K., J Proteomics 93(), 2013
PMID: 23563084
Proteins differentially expressed in conidia and mycelia of the entomopathogenic fungus Metarhizium anisopliae sensu stricto.
Su Y, Guo Q, Tu J, Li X, Meng L, Cao L, Dong D, Qiu J, Guan X., Can J Microbiol 59(7), 2013
PMID: 23826952
Identification of avocado (Persea americana) root proteins induced by infection with the oomycete Phytophthora cinnamomi using a proteomic approach
Acosta‐Muñiz CH, Escobar‐Tovar L, Valdes‐Rodríguez S, Fernández‐Pavia S, Arias‐Saucedo LJ, de la Cruz Espindola Barquera M, Gómez Lim MÁ., Physiol Plant 144(1), 2012
PMID: IND44691246
Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection.
Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F., Plant Physiol 159(1), 2012
PMID: 22399646
Complex I-complex II ratio strongly differs in various organs of Arabidopsis thaliana.
Peters K, Niessen M, Peterhänsel C, Späth B, Hölzle A, Binder S, Marchfelder A, Braun HP., Plant Mol Biol 79(3), 2012
PMID: 22527752
Plants versus fungi and oomycetes: pathogenesis, defense and counter-defense in the proteomics era.
El Hadrami A, El-Bebany AF, Yao Z, Adam LR, El Hadrami I, Daayf F., Int J Mol Sci 13(6), 2012
PMID: 22837691
Faba bean genomics: current status and future prospects
Alghamdi SS, Migdadi HM, Ammar MH, Paull JG, Siddique KHM., Euphytica 186(3), 2012
PMID: IND44739160
Simultaneous isolation of DNA, RNA, and protein from Medicago truncatula L.
Xiong J, Yang Q, Kang J, Sun Y, Zhang T, Margaret G, Ding W., Electrophoresis 32(2), 2011
PMID: 21254131
Enolases: storage compounds in seeds? Evidence from a proteomic comparison of zygotic and somatic embryos of Cyclamen persicum Mill.
Rode C, Gallien S, Heintz D, Van Dorsselaer A, Braun HP, Winkelmann T., Plant Mol Biol 75(3), 2011
PMID: 21249422
Application of proteomics to investigate stress-induced proteins for improvement in crop protection.
Afroz A, Ali GM, Mir A, Komatsu S., Plant Cell Rep 30(5), 2011
PMID: 21287176
A complex genetic network involving a broad-spectrum locus and strain-specific loci controls resistance to different pathotypes of Aphanomyces euteiches in Medicago truncatula.
Hamon C, Baranger A, Miteul H, Lecointe R, Le Goff I, Deniot G, Onfroy C, Moussart A, Prosperi JM, Tivoli B, Delourme R, Pilet-Nayel ML., Theor Appl Genet 120(5), 2010
PMID: 20012740
Proteomic studies of phytopathogenic fungi, oomycetes and their interactions with hosts
Bhadauria V, Banniza S, Wang LX, Wei YD, Peng YL., Eur J Plant Pathol 126(1), 2010
PMID: IND44296653
Model legumes contribute to faba bean breeding
Rispail Nicolas, Kaló Péter, Kiss GyörgyB, Ellis THNoel, Gallardo Karine, Thompson RichardD, Prats Elena, Larrainzar Estibaliz, Ladrera Ruben, González EstherM, Arrese-Igor Cesar, Ferguson BrettJ, Gresshoff PeterM, Rubiales Diego., Field Crops Res 115(3), 2010
PMID: IND44316555
Proteomics of plant pathogenic fungi.
González-Fernández R, Prats E, Jorrín-Novo JV., J Biomed Biotechnol 2010(), 2010
PMID: 20589070
Two-dimensional gel electrophoresis-based proteomic analysis of the Medicago truncatula-rust (Uromyces striatus) interaction
Castillejo MÁ, Susín R, Madrid E, Fernández-Aparicio M, Jorrín JV, Rubiales D., Ann Appl Biol 157(2), 2010
PMID: IND44414283
Comparative proteomic studies of root-microbe interactions.
Mathesius U., J Proteomics 72(3), 2009
PMID: 19152841
Translating Medicago truncatula genomics to crop legumes.
Young ND, Udvardi M., Curr Opin Plant Biol 12(2), 2009
PMID: 19162532
Pathogenesis and stress related, as well as metabolic proteins are regulated in tomato stems infected with Ralstonia solanacearum.
Dahal D, Heintz D, Van Dorsselaer A, Braun HP, Wydra K., Plant Physiol Biochem 47(9), 2009
PMID: 19482482
Differential expression proteomics to investigate responses and resistance to Orobanche crenata in Medicago truncatula.
Castillejo MA, Maldonado AM, Dumas-Gaudot E, Fernández-Aparicio M, Susín R, Diego R, Jorrín JV., BMC Genomics 10(), 2009
PMID: 19575787
Recent Advances in Medicago truncatula Genomics.
Ané JM, Zhu H, Frugoli J., Int J Plant Genomics 2008(), 2008
PMID: 18288239
Plant-pathogen interactions: what is proteomics telling us?
Mehta A, Brasileiro AC, Souza DS, Romano E, Campos MA, Grossi-de-Sá MF, Silva MS, Franco OL, Fragoso RR, Bevitori R, Rocha TL., FEBS J 275(15), 2008
PMID: 18616468
Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti.
van Noorden GE, Kerim T, Goffard N, Wiblin R, Pellerone FI, Rolfe BG, Mathesius U., Plant Physiol 144(2), 2007
PMID: 17468210
Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress.
Larrainzar E, Wienkoop S, Weckwerth W, Ladrera R, Arrese-Igor C, González EM., Plant Physiol 144(3), 2007
PMID: 17545507
Differential Frankia protein patterns induced by phenolic extracts from Myricaceae seeds
Bagnarol E, Popovici J, Alloisio N, Maréchal J, Pujic P, Normand P, Fernandez MP., Physiol Plant 130(3), 2007
PMID: IND43924474
Frankia alni proteome under nitrogen-fixing and nitrogen-replete conditions
Alloisio N, Félix S, Maréchal J, Pujic P, Rouy Z, Vallenet D, Medigue C, Normand P., Physiol Plant 130(3), 2007
PMID: IND43924480
Crop proteomics: aim at sustainable agriculture of tomorrow.
Salekdeh GH, Komatsu S., Proteomics 7(16), 2007
PMID: 17639607
Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum.
Paper JM, Scott-Craig JS, Adhikari ND, Cuomo CA, Walton JD., Proteomics 7(17), 2007
PMID: 17676664
Root rot disease of legumes caused by Aphanomyces euteiches.
Gaulin E, Jacquet C, Bottin A, Dumas B., Mol Plant Pathol 8(5), 2007
PMID: 20507520
Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes
Dita MA, Rispail N, Prats E, Rubiales D, Singh KB., Euphytica 147(1-2), 2006
PMID: IND43816135
Proteomics: a promising approach to study biotic interaction in legumes. A review
Jorrin JV, Rubiales D, Dumas-Gaudot E, Recorbet G, Maldonado A, Castillejo MA, Curto M., Euphytica 147(1-2), 2006
PMID: IND43816139
Screening techniques and sources of resistance to root diseases in cool season food legumes
Infantino A, Kharrat M, Riccioni L, Coyne CJ, McPhee KE, Grunwald NJ., Euphytica 147(1-2), 2006
PMID: IND43816192
A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi).
Curto M, Camafeita E, Lopez JA, Maldonado AM, Rubiales D, Jorrín JV., Proteomics 6 Suppl 1(), 2006
PMID: 16511815
Mass spectrometry-based proteomics for the detection of plant pathogens.
Padliya ND, Cooper B., Proteomics 6(14), 2006
PMID: 16791831
Identification of membrane-associated proteins regulated by the arbuscular mycorrhizal symbiosis.
Valot B, Dieu M, Recorbet G, Raes M, Gianinazzi S, Dumas-Gaudot E., Plant Mol Biol 59(4), 2005
PMID: 16244907

28 References

Daten bereitgestellt von Europe PubMed Central.

Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn. by two-dimensional electrophoresis and mass spectrometry.
Bestel-Corre G, Dumas-Gaudot E, Poinsot V, Dieu M, Dierick JF, van TD, Remacle J, Gianinazzi-Pearson V, Gianinazzi S., Electrophoresis 23(1), 2002
PMID: 11824612
A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation.
Djordjevic MA, Chen HC, Natera S, Van Noorden G, Menzel C, Taylor S, Renard C, Geiger O, Weiller GF; Sinorhizobium DNA Sequencing Consortium., Mol. Plant Microbe Interact. 16(6), 2003
PMID: 12795377

Engqvist, Acta Agric. Scand. Sec. B-Soil Plant Sci. 4(), 1997
Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula.
Fedorova M, van de Mortel J, Matsumoto PA, Cho J, Town CD, VandenBosch KA, Gantt JS, Vance CP., Plant Physiol. 130(2), 2002
PMID: 12376622

Grau, 1990
Correlation between protein and mRNA abundance in yeast.
Gygi SP, Rochon Y, Franza BR, Aebersold R., Mol. Cell. Biol. 19(3), 1999
PMID: 10022859
Alfalfa heat shock genes are differentially expressed during somatic embryogenesis.
Gyorgyey J, Gartner A, Nemeth K, Magyar Z, Hirt H, Heberle-Bors E, Dudits D., Plant Mol. Biol. 16(6), 1991
PMID: 1863771

Hagedorn, 1989

Handberg, Plant J. 2(), 1992

Hoagland, Calif. Agric. Exp. Stu. Circ. 347(), 1950
Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis.
Journet EP, van Tuinen D, Gouzy J, Crespeau H, Carreau V, Farmer MJ, Niebel A, Schiex T, Jaillon O, Chatagnier O, Godiard L, Micheli F, Kahn D, Gianinazzi-Pearson V, Gamas P., Nucleic Acids Res. 30(24), 2002
PMID: 12490726
Proteomic survey of metabolic pathways in rice.
Koller A, Washburn MP, Lange BM, Andon NL, Deciu C, Haynes PA, Hays L, Schieltz D, Ulaszek R, Wei J, Wolters D, Yates JR 3rd., Proc. Natl. Acad. Sci. U.S.A. 99(18), 2002
PMID: 12163647
Characterization of a gene family encoding abscisic acid- and environmental stress-inducible proteins of alfalfa.
Luo M, Liu JH, Mohapatra S, Hill RD, Mohapatra SS., J. Biol. Chem. 267(22), 1992
PMID: 1379227
Factors affecting growth and development of Aphanomyces euteiches.
Mitchell JE, Yang CY., Phytopathology 56(8), 1966
PMID: 5946310
Transcriptional profiling of Medicago truncatula roots after infection wtih Aphanomyces euteiches (oomycota) identifies novel genes upregulated during this pathogenic interaction.
Nyamsuren O, Colditz F, Rosendahl S, Tamasloukht MB, Bekel T, Meyer F, Kuester H, Franken P, Krajinski F., Physiol. Mol. Plant Pathol. 63(1), 2003
PMID: IND43743021
A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn.
Close TJ, Kortt AA, Chandler PM., Plant Mol. Biol. 13(1), 1989
PMID: 2562763
Mapping the proteome of barrel medic (Medicago truncatula).
Watson BS, Asirvatham VS, Wang L, Sumner LW., Plant Physiol. 131(3), 2003
PMID: 12644662

AUTHOR UNKNOWN, 0
Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula.
Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Kuster H, Krajinski F., Mol. Plant Microbe Interact. 16(4), 2003
PMID: 12744459

Zeevaart, Ann. Rev. Plant Physiol. Plant Mol. Biol. 39(), 1999
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 15604668
PubMed | Europe PMC

Suchen in

Google Scholar