Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum

Gross A, Kapp D, Nielsen T, Niehaus K (2005)
New Phytologist 165(1): 215-226.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Gross, A.; Kapp, D.; Nielsen, T.; Niehaus, KarstenUniBi
Abstract / Bemerkung
The specific recognition of phytopathogenic bacteria by plant cells is generally mediated by a number of signal molecules. The elicitor-active lipopolysaccharides (LPS) of the phytopathogenic bacterium Xanthomonas campestris pv. campestris (X.c.c) are recognized by its non-host plant Nicotiana tabacum (N.t.). This LPS was purified and labelled with fluorescein isothiocyanate (FITC) for monitoring the fate of these signal molecules in intact plant cells of tobacco. In this study we were able to show that the so-labelled LPS rapidly bound to the cell wall and was then internalized into the cells in a temperature- and energy-dependent way. This uptake of LPS could be outcompeted by the addition of an excess of unlabelled LPS. Furthermore, it was blocked by amantadine, an inhibitor of receptor-mediated endocytosis of mammalian cells. Immunolocalization experiments showed for the first time a significant co-localization of the LPS-elicitor with endosomal structures using an anti-Ara6 antibody. These observations suggest specific endocytosis of LPSX.c.c. into tobacco cells. The possibility for a receptor-mediated endocytosis comparable to the mammalian system will be discussed.
elicitor; interaction; endocytosis; LPS; plant-microbe; lipopolysaccharides; signaltransduction
New Phytologist
Page URI


Gross A, Kapp D, Nielsen T, Niehaus K. Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytologist. 2005;165(1):215-226.
Gross, A., Kapp, D., Nielsen, T., & Niehaus, K. (2005). Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytologist, 165(1), 215-226. https://doi.org/10.1111/j.1469-8137.2004.01245.x
Gross, A., Kapp, D., Nielsen, T., and Niehaus, Karsten. 2005. “Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum”. New Phytologist 165 (1): 215-226.
Gross, A., Kapp, D., Nielsen, T., and Niehaus, K. (2005). Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytologist 165, 215-226.
Gross, A., et al., 2005. Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytologist, 165(1), p 215-226.
A. Gross, et al., “Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum”, New Phytologist, vol. 165, 2005, pp. 215-226.
Gross, A., Kapp, D., Nielsen, T., Niehaus, K.: Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytologist. 165, 215-226 (2005).
Gross, A., Kapp, D., Nielsen, T., and Niehaus, Karsten. “Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum”. New Phytologist 165.1 (2005): 215-226.

32 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Flagellin peptide flg22 gains access to long-distance trafficking in Arabidopsis via its receptor, FLS2.
Jelenska J, Davern SM, Standaert RF, Mirzadeh S, Greenberg JT., J Exp Bot 68(7), 2017
PMID: 28521013
Differential induction of oxylipin pathway in potato and tobacco cells by bacterial and oomycete elicitors.
Saubeau G, Goulitquer S, Barloy D, Potin P, Andrivon D, Val F., Plant Cell Rep 32(5), 2013
PMID: 23479199
MAMP (microbe-associated molecular pattern) triggered immunity in plants.
Newman MA, Sundelin T, Nielsen JT, Erbs G., Front Plant Sci 4(), 2013
PMID: 23720666
Regulation and secretion of Xanthomonas virulence factors.
Büttner D, Bonas U., FEMS Microbiol Rev 34(2), 2010
PMID: 19925633
Endocytosis in plant-microbe interactions.
Leborgne-Castel N, Adam T, Bouhidel K., Protoplasma 247(3-4), 2010
PMID: 20814704
Lipopolysaccharide mobility in leaf tissue of Arabidopsis thaliana.
Zeidler D, Dubery IA, Schmitt-Kopplin P, Von Rad U, Durner J., Mol Plant Pathol 11(6), 2010
PMID: 21029320
Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine.
Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A, Rabenoelina F, Sorokin A, Renault JH, Kauffmann S, Pugin A, Clement C, Baillieul F, Dorey S., Plant Cell Environ 32(2), 2009
PMID: 19021887
Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses.
Aslam SN, Erbs G, Morrissey KL, Newman MA, Chinchilla D, Boller T, Molinaro A, Jackson RW, Cooper RM., Mol Plant Pathol 10(3), 2009
PMID: 19400840
Bacterial DNA activates immunity in Arabidopsis thaliana
Yakushiji S, Ishiga Y, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y., J. Gen. Plant Pathol. 75(3), 2009
PMID: IND44212195
Evidence for two endocytic transport pathways in plant cells
Etxeberria Ed, Gonzalez Pedro, Pozueta Javier., Plant Sci 177(4), 2009
PMID: IND44242706
Arabidopsis dynamin-like protein DRP1A: a null mutant with widespread defects in endocytosis, cellulose synthesis, cytokinesis, and cell expansion.
Collings DA, Gebbie LK, Howles PA, Hurley UA, Birch RJ, Cork AH, Hocart CH, Arioli T, Williamson RE., J Exp Bot 59(2), 2008
PMID: 18256049
Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity.
Erbs G, Silipo A, Aslam S, De Castro C, Liparoti V, Flagiello A, Pucci P, Lanzetta R, Parrilli M, Molinaro A, Newman MA, Cooper RM., Chem Biol 15(5), 2008
PMID: 18482696
Plant receptors go endosomal: a moving view on signal transduction.
Geldner N, Robatzek S., Plant Physiol 147(4), 2008
PMID: 18678748
The functions of Rab GTPases in plant membrane traffic.
Woollard AA, Moore I., Curr Opin Plant Biol 11(6), 2008
PMID: 18952493
Vesicle trafficking in plant immune responses.
Robatzek S., Cell Microbiol 9(1), 2007
PMID: 17081192
Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides.
Newman MA, Dow JM, Molinaro A, Parrilli M., J Endotoxin Res 13(2), 2007
PMID: 17621548
Pattern recognition receptors: from the cell surface to intracellular dynamics.
Altenbach D, Robatzek S., Mol Plant Microbe Interact 20(9), 2007
PMID: 17849705
Transport and secretion in plant-microbe interactions.
Hückelhoven R., Curr Opin Plant Biol 10(6), 2007
PMID: 17875397
Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells.
Desaki Y, Miya A, Venkatesh B, Tsuyumu S, Yamane H, Kaku H, Minami E, Shibuya N., Plant Cell Physiol 47(11), 2006
PMID: 17018557
The endocytic network in plants.
Samaj J, Read ND, Volkmann D, Menzel D, Baluska F., Trends Cell Biol 15(8), 2005
PMID: 16006126

68 References

Daten bereitgestellt von Europe PubMed Central.

Toll-like receptors in the induction of the innate immune response.
Aderem A, Ulevitch RJ., Nature 406(6797), 2000
PMID: 10963608
Alfalfa and tobacco cells react differently to chitin oligosaccharides and sinorhizobium meliloti nodulation factors
Baier R, Schiene K, Kohring B, Flaschel E, Niehaus K., Planta 210(1), 1999
PMID: 10592044
F-actin-dependent endocytosis of cell wall pectins in meristematic root cells. Insights from brefeldin A-induced compartments.
Baluska F, Hlavacka A, Samaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D, Volkmann D., Plant Physiol. 130(1), 2002
PMID: 12226521
Dynamic continuity of cytoplasmic and membrane compartments between plant cells.
Baron-Epel O, Hernandez D, Jiang LW, Meiners S, Schindler M., J. Cell Biol. 106(3), 1988
PMID: 3346323
Extracellular polysaccharides from Xanthomonas axonopodis pv. manihotis interact with cassava cell walls during pathogenesis.
Boher B, Nicole M, Potin M, Geiger JP., Mol. Plant Microbe Interact. 10(7), 1997
PMID: 9304855
Enzymatic equipment of plant vacuoles
Boller, Physiological Vegetarum 20(), 1982
Chemoperception of microbial signals in plants
Boller, Annual Review of Plant Physiology 46(), 1995

Boller, 1987
3,3',5,5' - Tetramethylbenzidine as an Ames test negative chromogen for horse-radish peroxidase in enzyme-immunoassay.
Bos ES, van der Doelen AA, van Rooy N, Schuurs AH., J Immunoassay 2(3-4), 1981
PMID: 7047570
Fungal polygalacturonases exhibit different substrate degradation patterns and differ in their susceptibilities to polygalacturonase-inhibiting proteins.
Cook BJ, Clay RP, Bergmann CW, Albersheim P, Darvill AG., Mol. Plant Microbe Interact. 12(8), 1999
PMID: 10432636
Visualization of elicitor-binding loci at the plant cell surface
Diekmann, Planta 195(), 1994
A locus determining pathogenicity of Xanthomonas campestris is involved in lipopolysaccharide biosynthesis.
Dow JM, Osbourn AE, Wilson TJ, Daniels MJ., Mol. Plant Microbe Interact. 8(5), 1995
PMID: 7579621
Comparative studies of lipopolysaccharide and exopolysaccharide from a virulent strain of Pseudomonas solanacearum and from three avirulent mutants.
Drigues P, Demery-Lafforgue D, Trigalet A, Dupin P, Samain D, Asselineau J., J. Bacteriol. 162(2), 1985
PMID: 3988700
Cell receptors: definition, mechanisms and regulation of receptor-mediated endocytosis
Feger, Cellular Molecular Biology (Noisy-le-Grand) 40(), 1994
Plants have a sensitive perception system for the most conserved domain of bacterial flagellin.
Felix G, Duran JD, Volko S, Boller T., Plant J. 18(3), 1999
PMID: 10377992
Current status of the gene-for-gene concept
Flor, Annual Review of Phytopathology 9(), 1971
Induced endocytosis in human fibroblasts by electrical fields.
Glogauer M, Lee W, McCulloch CA., Exp. Cell Res. 208(1), 1993
PMID: 8359218
Flagellin perception: a paradigm for innate immunity.
Gomez-Gomez L, Boller T., Trends Plant Sci. 7(6), 2002
PMID: 12049921
Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes.
Grebe M, Xu J, Mobius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B., Curr. Biol. 13(16), 2003
PMID: 12932321
Membrane transport in the endocytic pathway
Gruenberg, Current Opinions in Cell Biology 7(), 1995
Recognition and plasma clearance of endotoxin by scavenger receptors.
Hampton RY, Golenbock DT, Penman M, Krieger M, Raetz CR., Nature 352(6333), 1991
PMID: 1852209
Role of lectins (and rhizobial exopolysaccharides) in legume nodulation
Hirsch, Current Opinions in Plant Biology 2(), 1999
Clathrin and plant endocytosis.
Holstein SE., Traffic 3(9), 2002
PMID: 12191013
Receptor-Mediated Endocytosis in Plant Cells.
Horn MA, Heinstein PF, Low PS., Plant Cell 1(10), 1989
PMID: 12359884
Uptake, distribution and fate of bacterial lipopolysaccharides in monocytes and macrophages: an ultrastructural and functional correlation
Kang, Electron Microscopical Reviews 5(), 1992
Endocytosis of lipopolysaccharide in mouse macrophages
Kriegsmann, Cellular Molecular Biology (Noisy-le-Grand) 39(), 1993
Mukherjee S, Ghosh RN, Maxfield FR., Physiol. Rev. 77(3), 1997
PMID: 9234965
A revised medium for rapid growth and bioassay with tobacco tissue cultures
Murashige, Physiologia Plantarum 15(), 1962
Bacterial lipopolysaccharides and plant-pathogen interacftions.
Newman MA, Dow JM, Daniels MJ., Eur. J. Plant Pathol. 107(1), 2001
PMID: IND23222879
Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria.
Newman MA, von Roepenack-Lahaye E, Parr A, Daniels MJ, Dow JM., Plant J. 29(4), 2002
PMID: 11846881
Innate immunity in plants and animals: striking similarities and obvious differences.
Nurnberger T, Brunner F, Kemmerling B, Piater L., Immunol. Rev. 198(), 2004
PMID: 15199967
Covalent cross-linking of the Phytophthora megasperma oligopeptide elicitor to its receptor in parsley membranes
Nürnberger, Proceedings of the National Academy of Sciences, USA 92(), 1995
An extracellular glycoprotein from Phytophthora megasperma f. sp. glycinea elicits phytoalexin synthesis in cultured parsley cells and protoplasts
Parker, Molecular Plant-Microbe Interactions 4(), 1991

Pastan, 1985
CD14-dependent endotoxin internalization via a macropinocytic pathway.
Poussin C, Foti M, Carpentier JL, Pugin J., J. Biol. Chem. 273(32), 1998
PMID: 9685378
Fluid phase and receptor-mediated endocytosis in Paramecium primaurelia by fluorescence confocal laser scanning microscopy.
Ramoino P, Fronte P, Fato M, Beltrame F, Robello M, Diaspro A., Eur. Biophys. J. 30(5), 2001
PMID: 11592687
Requirement for either a host- or pectin-induced pectate lyase for infection of Pisum sativum by Nectria hematococca
Rogers, Proceedings of the National Academy of Sciences, USA 97(), 2000
Endocytosis of exopolysaccharides of the potato ring rot causal agent by host-plant cells.
Romanenko AS, Rifel AA, Salyaev RK., Dokl. Biol. Sci. 386(), 2002
PMID: 12469411
Synthesis and assembly of bacterial membrane components. A lipopolysaccharide-phospholipid-protein complex excreted by living bacteria
Rothfield, Journal of Molecular Biology 44(), 1968
Saturable binding sites for vesicular stomatitis virus on the surface of Vero cells.
Schlegel R, Willingham MC, Pastan IH., J. Virol. 43(3), 1982
PMID: 6292466
Structure and function of lipopolysaccharide binding protein.
Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ., Science 249(4975), 1990
PMID: 2402637
Scavenger-receptor-mediated endocytosis of lipopolysaccharide in Atlantic cod (Gadus morhua L.).
Seternes T, Dalmo RA, Hoffman J, Bogwald J, Zykova S, Smedsrod B., J. Exp. Biol. 204(Pt 23), 2001
PMID: 11809780
Comparison of the genomes of two Xanthomonas pathogens with differing host specificities.
da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA, Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP., Nature 417(6887), 2002
PMID: 12024217
Endotoxin interactions with lipopolysaccharide-responsive cells
Tobias, Clinical Infection and Disease 28(), 1999
Lipopolysaccharide binding protein and CD14 in LPS dependent macrophage activation.
Tobias PS, Ulevitch RJ., Immunobiology 187(3-5), 1993
PMID: 7687234
Mutation in a gene required for lipopolysaccharide and enterobacterial common antigen biosynthesis affects virulence in the plant pathogen Erwinia carotovora subsp. atroseptica.
Toth IK, Thorpe CJ, Bentley SD, Mulholland V, Hyman LJ, Perombelon MC, Salmond GP., Mol. Plant Microbe Interact. 12(6), 1999
PMID: 10356801
Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana.
Ueda T, Yamaguchi M, Uchimiya H, Nakano A., EMBO J. 20(17), 2001
PMID: 11532937
Developmental regulation of a Rhizobium cell surface antigen during growth of pea root nodules.
VandenBosch KA, Brewin NJ, Kannenberg EL., J. Bacteriol. 171(9), 1989
PMID: 2768180
Bacterial lipopolysaccharides: extraction with phenol-water and further application of the procedure
Westphal, Methods In Carbohydrate Chemistry 5(), 1965
The plant vacuole: a multifunctional compartment
Wink, Journal of Experimental Botany 44(), 1993

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 15720635
PubMed | Europe PMC

Suchen in

Google Scholar