The Lipid A substructure of the Sinorhizobium meliloti lipopolysaccharides is sufficient to suppress the oxidative burst in host plants

Scheidle H, Gross A, Niehaus K (2005)
New Phytologist 165(2): 559-566.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Scheidle, H.; Gross, A.; Niehaus, KarstenUniBi
Abstract / Bemerkung
Medicago sativa (alfalfa), Medicago truncatula and Nicotiana tabacum cell suspension cultures, responding to elicitation with the production of reactive oxygen species (ROS), were used to analyse the suppressor (and elicitor) activity of lipopolysaccharides (LPS) of the symbiotic soil bacterium Sinorhizobium meliloti. In order to identify the epitopes of the LPS molecule recognized by the plant, S. meliloti mutants defective in LPS biosynthesis and hydrolytically obtained Lipid A were analysed for biological activity. Lipopolysaccharides isolated from Sinorhizobium meliloti mutants 6963 (altered core region) and L994 (no long-chain fatty acid) showed the same ability to suppress the oxidative burst in host plant cell cultures as the wild-type LPS. Lipid A also displayed the same suppressor activity. By contrast, rhizobial LPS, but not Lipid A, was active as an inducer of the oxidative burst reaction in cell cultures of the nonhost Nicotiana tabacum. In host plants of Sinorhizobium meliloti the Lipid A part is sufficient to suppress the oxidative burst, but in non-host plants at least some sugars of the LPS core region are required to induce defence reactions.
elicitor; Sinorhizobium meliloti; plant defence; burst; oxidative; Nicotiana; Lipid A; Medicago; lipopolysaccharides
New Phytologist
Page URI


Scheidle H, Gross A, Niehaus K. The Lipid A substructure of the Sinorhizobium meliloti lipopolysaccharides is sufficient to suppress the oxidative burst in host plants. New Phytologist. 2005;165(2):559-566.
Scheidle, H., Gross, A., & Niehaus, K. (2005). The Lipid A substructure of the Sinorhizobium meliloti lipopolysaccharides is sufficient to suppress the oxidative burst in host plants. New Phytologist, 165(2), 559-566.
Scheidle, H., Gross, A., and Niehaus, K. (2005). The Lipid A substructure of the Sinorhizobium meliloti lipopolysaccharides is sufficient to suppress the oxidative burst in host plants. New Phytologist 165, 559-566.
Scheidle, H., Gross, A., & Niehaus, K., 2005. The Lipid A substructure of the Sinorhizobium meliloti lipopolysaccharides is sufficient to suppress the oxidative burst in host plants. New Phytologist, 165(2), p 559-566.
H. Scheidle, A. Gross, and K. Niehaus, “The Lipid A substructure of the Sinorhizobium meliloti lipopolysaccharides is sufficient to suppress the oxidative burst in host plants”, New Phytologist, vol. 165, 2005, pp. 559-566.
Scheidle, H., Gross, A., Niehaus, K.: The Lipid A substructure of the Sinorhizobium meliloti lipopolysaccharides is sufficient to suppress the oxidative burst in host plants. New Phytologist. 165, 559-566 (2005).
Scheidle, H., Gross, A., and Niehaus, Karsten. “The Lipid A substructure of the Sinorhizobium meliloti lipopolysaccharides is sufficient to suppress the oxidative burst in host plants”. New Phytologist 165.2 (2005): 559-566.

33 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Cell Autoaggregation, Biofilm Formation, and Plant Attachment in a Sinorhizobium meliloti lpsB Mutant.
Sorroche F, Bogino P, Russo DM, Zorreguieta A, Nievas F, Morales GM, Hirsch AM, Giordano W., Mol Plant Microbe Interact 31(10), 2018
PMID: 30136892
How legumes recognize rhizobia.
Via VD, Zanetti ME, Blanco F., Plant Signal Behav 11(2), 2016
PMID: 26636731
Rhizobium-legume symbioses: the crucial role of plant immunity.
Gourion B, Berrabah F, Ratet P, Stacey G., Trends Plant Sci 20(3), 2015
PMID: 25543258
Changes in the Common Bean Transcriptome in Response to Secreted and Surface Signal Molecules of Rhizobium etli.
Dalla Via V, Narduzzi C, Aguilar OM, Zanetti ME, Blanco FA., Plant Physiol 169(2), 2015
PMID: 26282238
Membrane lipids in Agrobacterium tumefaciens: biosynthetic pathways and importance for pathogenesis.
Aktas M, Danne L, Möller P, Narberhaus F., Front Plant Sci 5(), 2014
PMID: 24723930
A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis.
Berrabah F, Bourcy M, Eschstruth A, Cayrel A, Guefrachi I, Mergaert P, Wen J, Jean V, Mysore KS, Gourion B, Ratet P., New Phytol 203(4), 2014
PMID: 24916161
Agrobacteria lacking ornithine lipids induce more rapid tumour formation.
Vences-Guzmán MÁ, Guan Z, Bermúdez-Barrientos JR, Geiger O, Sohlenkamp C., Environ Microbiol 15(3), 2013
PMID: 22958119
Microbial recognition and evasion of host immunity.
Pel MJ, Pieterse CM., J Exp Bot 64(5), 2013
PMID: 23095994
Modulation of host immunity by beneficial microbes.
Zamioudis C, Pieterse CM., Mol Plant Microbe Interact 25(2), 2012
PMID: 21995763
Biochemical characterization of Sinorhizobium meliloti mutants reveals gene products involved in the biosynthesis of the unusual lipid A very long-chain fatty acid.
Haag AF, Wehmeier S, Muszyński A, Kerscher B, Fletcher V, Berry SH, Hold GL, Carlson RW, Ferguson GP., J Biol Chem 286(20), 2011
PMID: 21454518
Glyco-conjugates as elicitors or suppressors of plant innate immunity.
Silipo A, Erbs G, Shinya T, Dow JM, Parrilli M, Lanzetta R, Shibuya N, Newman MA, Molinaro A., Glycobiology 20(4), 2010
PMID: 20018942
Symbiont genomics, our new tangled bank.
Medina M, Sachs JL., Genomics 95(3), 2010
PMID: 20053372
Structural analysis of lipopolysaccharides from Gram-negative bacteria.
Kabanov DS, Prokhorenko IR., Biochemistry (Mosc) 75(4), 2010
PMID: 20618127
Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions.
Soto MJ, Domínguez-Ferreras A, Pérez-Mendoza D, Sanjuán J, Olivares J., Cell Microbiol 11(3), 2009
PMID: 19134114
Molecular determinants of a symbiotic chronic infection.
Gibson KE, Kobayashi H, Walker GC., Annu Rev Genet 42(), 2008
PMID: 18983260
Mutations in lipopolysaccharide biosynthetic genes impair maize rhizosphere and root colonization of Rhizobium tropici CIAT899.
Ormeño-Orrillo E, Rosenblueth M, Luyten E, Vanderleyden J, Martínez-Romero E., Environ Microbiol 10(5), 2008
PMID: 18312393
Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides.
Newman MA, Dow JM, Molinaro A, Parrilli M., J Endotoxin Res 13(2), 2007
PMID: 17621548
Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system.
Lefebvre B, Furt F, Hartmann MA, Michaelson LV, Carde JP, Sargueil-Boiron F, Rossignol M, Napier JA, Cullimore J, Bessoule JJ, Mongrand S., Plant Physiol 144(1), 2007
PMID: 17337521
How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model.
Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC., Nat Rev Microbiol 5(8), 2007
PMID: 17632573
Plant lipid rafts: fluctuat nec mergitur.
Furt F, Lefebvre B, Cullimore J, Bessoule JJ, Mongrand S., Plant Signal Behav 2(6), 2007
PMID: 19704542
CbrA is a stationary-phase regulator of cell surface physiology and legume symbiosis in Sinorhizobium meliloti.
Gibson KE, Campbell GR, Lloret J, Walker GC., J Bacteriol 188(12), 2006
PMID: 16740957
Early signaling events induced by elicitors of plant defenses.
Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A., Mol Plant Microbe Interact 19(7), 2006
PMID: 16838784

37 References

Daten bereitgestellt von Europe PubMed Central.

Alfalfa and tobacco cells react differently to chitin oligosaccharides and sinorhizobium meliloti nodulation factors
Baier R, Schiene K, Kohring B, Flaschel E, Niehaus K., Planta 210(1), 1999
PMID: 10592044
Development of the legume root nodule.
Brewin NJ., Annu. Rev. Cell Biol. 7(), 1991
PMID: 1809347
Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants.
Campbell GR, Sharypova LA, Scheidle H, Jones KM, Niehaus K, Becker A, Walker GC., J. Bacteriol. 185(13), 2003
PMID: 12813079
The Isolation and Partial Characterization of the Lipopolysaccharides from Several Rhizobium trifolii Mutants Affected in Root Hair Infection.
Carlson RW, Shatters R, Duh JL, Turnbull E, Hanley B, Rolfe BG, Djordjevic MA., Plant Physiol. 84(2), 1987
PMID: 16665455
Identification and characterisation of large plasmids of large plasmids in Rhizobium meliloti using agarose gel electrophoresis
Casse, Journal of Bacteriology 113(), 1979
Lipopolysaccharides from Burkholderia cepacia contribute to an enhanced defensive capacity and the induction of pathogenesis-related proteins of Nicotiana tabacum
Coventry, Physiological Molecular Plant Pathology 58(), 2001
Rhizobium- the refined parasite of legumes
Djordjevic, Annual of Review of Phytopathology 25(), 1987
The Induction and Modulation of Plant Defense Responses by Bacterial Lipopolysaccharides.
Dow M, Newman MA, von Roepenack E., Annu Rev Phytopathol 38(), 2000
PMID: 11701843
Biological activity of synthetic heptaacyl lipid A representing a component of Salmonella minnesota R595 lipid A.
Galanos C, Luderitz O, Freudenberg M, Brade L, Schade U, Rietschel ET, Kusumoto S, Shiba T., Eur. J. Biochem. 160(1), 1986
PMID: 3490368
Bacterial lipopolysaccharides as inducers of disease resistance in tobacco
Graham, Applied Environmental Microbiology 34(), 1977
Developmental biology of legume nodulation
Hirsch, New Phytologist 122(), 1992
A Rhizobium meliloti lipopolysaccharide mutant altered in competitiveness for nodulation of alfalfa.
Lagares A, Caetano-Anolles G, Niehaus K, Lorenzen J, Ljunggren HD, Puhler A, Favelukes G., J. Bacteriol. 174(18), 1992
PMID: 1325969
Pathogen derived elicitors: searching for receptors in plants.
Montesano M, Brader G, Palva ET., Mol. Plant Pathol. 4(1), 2003
PMID: IND23318560
A revised medium for rapid growth and bioassays with tobacco tissue culture
Murashige, Physiologia Plantarum 15(), 1962
The role of microbial surface polysaccharides in the Rhizobium-legume interaction
Niehaus, Subcellular Biochemistry 29(), 1998
Plant defence and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPS I)-deficient Rhizobium meliloti mutant
Niehaus, Planta 190(), 1993
A Sinorhizobium meliloti lipopolysaccharide mutant induces effective nodules on the host plant Medicago sativa (alfalfa) but fails to establish a symbiosis with Medicago truncatula
Niehaus, Molecular Plant-Microbe Interactions 11(), 1998

Quispel, 1998
Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens
Reuhs, Applied Environmental Microbiology 64(), 1998
Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals.
Roche P, Debelle F, Maillet F, Lerouge P, Faucher C, Truchet G, Denarie J, Prome JC., Cell 67(6), 1991
PMID: 1760841
Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction.
Santos R, Herouart D, Sigaud S, Touati D, Puppo A., Mol. Plant Microbe Interact. 14(1), 2001
PMID: 11194876
Lipopolysaccharides: structure, bioactivity, receptors and signal tranduction
Ulmer, Trends in Glycoscience and Glycotechnology 14(), 2002
Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interaction is accompanied by hypersensitive reaction
Vasse, Plant Journal 4(), 1993
A Rhizobium leguminosarum lipopolysaccharide lipid-A mutant induces nitrogen-fixing nodules with delayed and defective bacteroid formation.
Vedam V, Haynes JG, Kannenberg EL, Carlson RW, Sherrier DJ., Mol. Plant Microbe Interact. 17(3), 2004
PMID: 15000395
Quantification of hydrogen peroxide in plant extracts by the chemoluminescence reaction with luminol
Warm, Phytochemistry 21(), 1982
Bacterial lipopolysaccharides: Extraction with phenol-water and further application of the procedure
Westphal, Carbohydrate Chemistry 5(), 1965


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 15720666
PubMed | Europe PMC

Suchen in

Google Scholar