Heat shock Proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone

Barreiro C, Gonzalez-Lavado E, Brand S, Tauch A, Martin JF (2005)
JOURNAL OF BACTERIOLOGY 187(3): 884-889.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Barreiro, C; Gonzalez-Lavado, E; Brand, S; Tauch, AndreasUniBi; Martin, JF
Abstract / Bemerkung
Proteome analysis of Corynebacterium glutanticum ATCC 13032 showed that levels of several proteins increased drastically in response to heat shock. These proteins were identified as DnaK, GroEL1, GroEL2, ClpB, GrpE, and PoxB, and their heat response was in agreement with previous transcriptomic results. A major heat-induced protein was absent in the proteome of strain 13032B of C. glutamicum, used for genome sequencing in Germany, compared with the wild-type ATCC 13032 strain. The missing protein was identified as GroEL1 by matrix-assisted laser desorption ionization-time of flight peptide mass fingerprinting, and the mutation was found to be due to an insertion sequence, IsCg1, that was integrated at position 327 downstream of the translation start codon of the groEL1 gene, resulting in a truncated transcript of this gene, as shown by Northern analysis. The GroEL1 chaperone is, therefore, dispensable in C. glutamicum. On the other hand, GroEL2 appears to be essential for growth. Based on these results, the role of the duplicate groEL1 and groEL2 genes is analyzed.
Erscheinungsjahr
2005
Zeitschriftentitel
JOURNAL OF BACTERIOLOGY
Band
187
Ausgabe
3
Seite(n)
884-889
ISSN
0021-9193
Page URI
https://pub.uni-bielefeld.de/record/1605160

Zitieren

Barreiro C, Gonzalez-Lavado E, Brand S, Tauch A, Martin JF. Heat shock Proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone. JOURNAL OF BACTERIOLOGY. 2005;187(3):884-889.
Barreiro, C., Gonzalez-Lavado, E., Brand, S., Tauch, A., & Martin, J. F. (2005). Heat shock Proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone. JOURNAL OF BACTERIOLOGY, 187(3), 884-889. https://doi.org/10.1128/JB.187.3.884-889.2005
Barreiro, C, Gonzalez-Lavado, E, Brand, S, Tauch, Andreas, and Martin, JF. 2005. “Heat shock Proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone”. JOURNAL OF BACTERIOLOGY 187 (3): 884-889.
Barreiro, C., Gonzalez-Lavado, E., Brand, S., Tauch, A., and Martin, J. F. (2005). Heat shock Proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone. JOURNAL OF BACTERIOLOGY 187, 884-889.
Barreiro, C., et al., 2005. Heat shock Proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone. JOURNAL OF BACTERIOLOGY, 187(3), p 884-889.
C. Barreiro, et al., “Heat shock Proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone”, JOURNAL OF BACTERIOLOGY, vol. 187, 2005, pp. 884-889.
Barreiro, C., Gonzalez-Lavado, E., Brand, S., Tauch, A., Martin, J.F.: Heat shock Proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone. JOURNAL OF BACTERIOLOGY. 187, 884-889 (2005).
Barreiro, C, Gonzalez-Lavado, E, Brand, S, Tauch, Andreas, and Martin, JF. “Heat shock Proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone”. JOURNAL OF BACTERIOLOGY 187.3 (2005): 884-889.

32 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Multiple chaperonins in bacteria--novel functions and non-canonical behaviors.
Kumar CM, Mande SC, Mahajan G., Cell Stress Chaperones 20(4), 2015
PMID: 25986150
Corynebacterium glutamicum promoters: a practical approach.
Pátek M, Holátko J, Busche T, Kalinowski J, Nešvera J., Microb Biotechnol 6(2), 2013
PMID: 23305350
Mechanisms involved in the functional divergence of duplicated GroEL chaperonins in Myxococcus xanthus DK1622.
Wang Y, Zhang WY, Zhang Z, Li J, Li ZF, Tan ZG, Zhang TT, Wu ZH, Liu H, Li YZ., PLoS Genet 9(2), 2013
PMID: 23437010
Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C₄ and C₅ dicarboxylic acids.
Vasco-Cárdenas MF, Baños S, Ramos A, Martín JF, Barreiro C., J Proteomics 85(), 2013
PMID: 23624027
Protein turnover quantification in a multilabeling approach: from data calculation to evaluation.
Trötschel C, Albaum SP, Wolff D, Schröder S, Goesmann A, Nattkemper TW, Poetsch A., Mol Cell Proteomics 11(8), 2012
PMID: 22493176
Proteomics of corynebacteria: From biotechnology workhorses to pathogens.
Poetsch A, Haussmann U, Burkovski A., Proteomics 11(15), 2011
PMID: 21674800
Molecular characterization of the Corynebacterium pseudotuberculosis hsp60-hsp10 operon, and evaluation of the immune response and protective efficacy induced by hsp60 DNA vaccination in mice.
Costa MP, McCulloch JA, Almeida SS, Dorella FA, Fonseca CT, Oliveira DM, Teixeira MF, Laskowska E, Lipinska B, Meyer R, Portela RW, Oliveira SC, Miyoshi A, Azevedo V., BMC Res Notes 4(), 2011
PMID: 21774825
Loss and gain of GroEL in the Mollicutes.
Clark GW, Tillier ER., Biochem Cell Biol 88(2), 2010
PMID: 20453921
Cpn20: siamese twins of the chaperonin world.
Weiss C, Bonshtien A, Farchi-Pisanty O, Vitlin A, Azem A., Plant Mol Biol 69(3), 2009
PMID: 19031045
Microarray studies reveal a 'differential response' to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum.
Barreiro C, Nakunst D, Hüser AT, de Paz HD, Kalinowski J, Martín JF., Microbiology 155(pt 2), 2009
PMID: 19202085
Multiple chaperonins in bacteria--why so many?
Lund PA., FEMS Microbiol Rev 33(4), 2009
PMID: 19416363
Facilitated oligomerization of mycobacterial GroEL: evidence for phosphorylation-mediated oligomerization.
Kumar CM, Khare G, Srikanth CV, Tyagi AK, Sardesai AA, Mande SC., J Bacteriol 191(21), 2009
PMID: 19717599
Response of the cytoplasmic and membrane proteome of Corynebacterium glutamicum ATCC 13032 to pH changes.
Barriuso-Iglesias M, Schluesener D, Barreiro C, Poetsch A, Martín JF., BMC Microbiol 8(), 2008
PMID: 19091079
Global transcriptome analysis of the heat shock response of Bifidobacterium longum.
Rezzonico E, Lariani S, Barretto C, Cuanoud G, Giliberti G, Delley M, Arigoni F, Pessi G., FEMS Microbiol Lett 271(1), 2007
PMID: 17419761
Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum.
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D., Microbiol Mol Biol Rev 71(3), 2007
PMID: 17804669
Emerging Corynebacterium glutamicum systems biology.
Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W., J Biotechnol 124(1), 2006
PMID: 16406159
Metabolic activity of Corynebacterium glutamicum grown on L: -lactic acid under stress.
Seletzky JM, Noack U, Fricke J, Hahn S, Büchs J., Appl Microbiol Biotechnol 72(6), 2006
PMID: 16642330
How high G+C Gram-positive bacteria and in particular bifidobacteria cope with heat stress: protein players and regulators.
Ventura M, Canchaya C, Zhang Z, Bernini V, Fitzgerald GF, van Sinderen D., FEMS Microbiol Rev 30(5), 2006
PMID: 16911042
GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria.
Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR, Hatfull GF., Cell 123(5), 2005
PMID: 16325580
Manipulating corynebacteria, from individual genes to chromosomes.
Vertès AA, Inui M, Yukawa H., Appl Environ Microbiol 71(12), 2005
PMID: 16332735

41 References

Daten bereitgestellt von Europe PubMed Central.

Gene duplication and the evolution of group II chaperonins: implications for structure and function.
Archibald JM, Blouin C, Doolittle WF., J. Struct. Biol. 135(2), 2001
PMID: 11580265
A physical and genetic map of the Corynebacterium glutamicum ATCC 13032 chromosome.
Bathe B, Kalinowski J, Puhler A., Mol. Gen. Genet. 252(3), 1996
PMID: 8842145
A rapid alkaline extraction procedure for screening recombinant plasmid DNA.
Birnboim HC, Doly J., Nucleic Acids Res. 7(6), 1979
PMID: 388356
Flexibility of the metabolism of Corynebacterium glutamicum 2262, a glutamic acid-producing bacterium, in response to temperature upshocks.
Delaunay S, Lapujade P, Engasser JM, Goergen JL., J. Ind. Microbiol. Biotechnol. 28(6), 2002
PMID: 12032806
Streptomyces lividans groES, groEL1 and groEL2 genes.
de Leon P, Marco S, Isiegas C, Marina A, Carrascosa JL, Mellado RP., Microbiology (Reading, Engl.) 143 ( Pt 11)(), 1997
PMID: 9387235
Molecular aspects of lysine, threonine, and isoleucine biosynthesis in Corynebacterium glutamicum.
Eikmanns BJ, Eggeling L, Sahm H., Antonie Van Leeuwenhoek 64(2), 1993
PMID: 8092856
Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7522844
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Proteome analysis of Corynebacterium glutamicum.
Hermann T, Pfefferle W, Baumann C, Busker E, Schaffer S, Bott M, Sahm H, Dusch N, Kalinowski J, Puhler A, Bendt AK, Kramer R, Burkovski A., Electrophoresis 22(9), 2001
PMID: 11425227
Mapping and identification of Corynebacterium glutamicum proteins by two-dimensional gel electrophoresis and microsequencing.
Hermann T, Wersch G, Uhlemann EM, Schmid R, Burkovski A., Electrophoresis 19(18), 1998
PMID: 9932818
The Corynebacterium glutamicum genome: features and impacts on biotechnological processes.
Ikeda M, Nakagawa S., Appl. Microbiol. Biotechnol. 62(2-3), 2003
PMID: 12743753
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Heat shock protein 60 sequence comparisons: duplications, lateral transfer, and mitochondrial evolution.
Karlin S, Brocchieri L., Proc. Natl. Acad. Sci. U.S.A. 97(21), 2000
PMID: 11027334

AUTHOR UNKNOWN, 1957

AUTHOR UNKNOWN, 1989

AUTHOR UNKNOWN, 1999

AUTHOR UNKNOWN, 1987
Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress.
Mostertz J, Scharf C, Hecker M, Homuth G., Microbiology (Reading, Engl.) 150(Pt 2), 2004
PMID: 14766928
Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose.
Muffler A, Bettermann S, Haushalter M, Horlein A, Neveling U, Schramm M, Sorgenfrei O., J. Biotechnol. 98(2-3), 2002
PMID: 12141991
Efficient 40 degrees C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding.
Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M., Appl. Microbiol. Biotechnol. 62(1), 2003
PMID: 12835923
Probability-based protein identification by searching sequence databases using mass spectrometry data.
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS., Electrophoresis 20(18), 1999
PMID: 10612281
Proteome analysis in the study of the bacterial heat-shock response.
Rosen R, Ron EZ., Mass Spectrom Rev 21(4), 2002
PMID: 12533799

AUTHOR UNKNOWN, 2001
A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum.
Schaffer S, Weil B, Nguyen VD, Dongmann G, Gunther K, Nickolaus M, Hermann T, Bott M., Electrophoresis 22(20), 2001
PMID: 11824608

AUTHOR UNKNOWN, 1980
Isolation and characterization of IS31831, a transposable element from Corynebacterium glutamicum.
Vertes AA, Inui M, Kobayashi M, Kurusu Y, Yukawa H., Mol. Microbiol. 11(4), 1994
PMID: 8196545
Heat shock proteins and antigens of Mycobacterium tuberculosis.
Young DB, Garbe TR., Infect. Immun. 59(9), 1991
PMID: 1679042
Regulation of the heat-shock response.
Yura T, Nakahigashi K., Curr. Opin. Microbiol. 2(2), 1999
PMID: 10322172
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 15659666
PubMed | Europe PMC

Suchen in

Google Scholar