Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100

Watt SA, Wilke A, Patschkowski T, Niehaus K (2005)
Proteomics 5(1): 153-167.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The extracellular proteome of Xanthomonas campestris pv. campestris (Xcc) cultivated in minimal medium was isolated from the cell-free culture supernatant and separated by two-dimensional gel electrophoresis. This technique resolved 97 clearly visible protein spots, which were excised, digested with trypsin and identified on the basis of their peptide mass fingerprints generated by matrix assisted laser desorption/ionisation-time of flight-mass spectrometry. Using this approach 87 different proteins could be distinguished. The Signal P software predicted putative signal peptides for 53% of the extracellular proteins. These proteins are probably transported over the inner membrane and are localized in the periplasm, the outer membrane or secreted into the extracellular space. Among the secreted proteins are 11 degradative enzymes, which are involved in pathogenesis of Xcc. The proteins without obvious secretion signals are known to serve functions in the cytosol. How the cytosolic proteins are delivered to the extracellular space remains unclear.
extracellular proteome; two-dimensional gel; electrophoresis; periplasmic proteins; Xanthomonas campestris pv. campestris
Page URI


Watt SA, Wilke A, Patschkowski T, Niehaus K. Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100. Proteomics. 2005;5(1):153-167.
Watt, S. A., Wilke, A., Patschkowski, T., & Niehaus, K. (2005). Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100. Proteomics, 5(1), 153-167.
Watt, S. A., Wilke, A., Patschkowski, Thomas, and Niehaus, Karsten. 2005. “Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100”. Proteomics 5 (1): 153-167.
Watt, S. A., Wilke, A., Patschkowski, T., and Niehaus, K. (2005). Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100. Proteomics 5, 153-167.
Watt, S.A., et al., 2005. Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100. Proteomics, 5(1), p 153-167.
S.A. Watt, et al., “Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100”, Proteomics, vol. 5, 2005, pp. 153-167.
Watt, S.A., Wilke, A., Patschkowski, T., Niehaus, K.: Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100. Proteomics. 5, 153-167 (2005).
Watt, S. A., Wilke, A., Patschkowski, Thomas, and Niehaus, Karsten. “Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100”. Proteomics 5.1 (2005): 153-167.

55 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic bacterium, but not nitrogen-fixing rhizobial symbiosis.
Pfeilmeier S, George J, Morel A, Roy S, Smoker M, Stransfeld L, Downie JA, Peeters N, Malone JG, Zipfel C., Plant Biotechnol J 17(3), 2019
PMID: 30120864
Structural characterization of a pathogenicity-related superoxide dismutase codified by a probably essential gene in Xanthomonas citri subsp. citri.
Cabrejos DAL, Alexandrino AV, Pereira CM, Mendonça DC, Pereira HD, Novo-Mansur MTM, Garratt RC, Goto LS., PLoS One 14(1), 2019
PMID: 30615696
Identification of an extracellular bacterial flavoenzyme that can prevent re-polymerisation of lignin fragments.
Rahmanpour R, King LD, Bugg TD., Biochem Biophys Res Commun 482(1), 2017
PMID: 27816454
The naringenin-induced exoproteome of Rhizobium etli CE3.
Meneses N, Taboada H, Dunn MF, Vargas MDC, Buchs N, Heller M, Encarnación S., Arch Microbiol 199(5), 2017
PMID: 28255691
Differential accumulation of Xanthomonas campestris pv. campestris proteins during the interaction with the host plant: Contributions of an in vivo system.
Santos C, Maximiano MR, Ribeiro DG, Oliveira-Neto OB, Murad AM, Franco OL, Mehta A., Proteomics 17(12), 2017
PMID: 28471538
Systems and synthetic biology perspective of the versatile plant-pathogenic and polysaccharide-producing bacterium Xanthomonas campestris.
Schatschneider S, Schneider J, Blom J, Létisse F, Niehaus K, Goesmann A, Vorhölter FJ., Microbiology 163(8), 2017
PMID: 28795660
Global Transcriptome Profiling of Xanthomonas oryzae pv. oryzae under in planta Growth and in vitro Culture Conditions.
Lee SE, Gupta R, Jayaramaiah RH, Lee SH, Wang Y, Park SR, Kim ST., Plant Pathol J 33(5), 2017
PMID: 29018309
Unravelling potential virulence factor candidates in Xanthomonas citri. subsp. citri by secretome analysis.
Ferreira RM, Moreira LM, Ferro JA, Soares MRR, Laia ML, Varani AM, de Oliveira JCF, Ferro MIT., PeerJ 4(), 2016
PMID: 26925342
A TonB-dependent receptor regulates antifungal HSAF biosynthesis in Lysobacter.
Wang R, Xu H, Du L, Chou SH, Liu H, Liu Y, Liu F, Qian G., Sci Rep 6(), 2016
PMID: 27241275
Comparative Secretome Analysis Reveals Perturbation of Host Secretion Pathways by a Hypovirus.
Wang J, Shi L, He X, Lu L, Li X, Chen B., Sci Rep 6(), 2016
PMID: 27698384
Comprehensive proteome analysis of Actinoplanes sp. SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster.
Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Walter F, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Pühler A., J Proteomics 125(), 2015
PMID: 25896738
Comparative proteomics reveal new HrpX-regulated proteins of Xanthomonas oryzae pv. oryzae.
Robin GP, Ortiz E, Szurek B, Brizard JP, Koebnik R., J Proteomics 97(), 2014
PMID: 23603630
Characterization of the pyrophosphate-dependent 6-phosphofructokinase from Xanthomonas campestris pv. campestris.
Frese M, Schatschneider S, Voss J, Vorhölter FJ, Niehaus K., Arch Biochem Biophys 546(), 2014
PMID: 24508689
SecDF as part of the Sec-translocase facilitates efficient secretion of Bacillus cereus toxins and cell wall-associated proteins.
Vörös A, Simm R, Slamti L, McKay MJ, Hegna IK, Nielsen-LeRoux C, Hassan KA, Paulsen IT, Lereclus D, Økstad OA, Molloy MP, Kolstø AB., PLoS One 9(8), 2014
PMID: 25083861
Biotic interactions in the rhizosphere: a diverse cooperative enterprise for plant productivity.
De-la-Peña C, Loyola-Vargas VM., Plant Physiol 166(2), 2014
PMID: 25118253
Secretome analysis of the rice bacterium Xanthomonas oryzae (Xoo) using in vitro and in planta systems.
Wang Y, Kim SG, Wu J, Huh HH, Lee SJ, Rakwal R, Agrawal GK, Park ZY, Young Kang K, Kim ST., Proteomics 13(12-13), 2013
PMID: 23512849
Dynamic protein phosphorylation during the growth of Xanthomonas campestris pv. campestris B100 revealed by a gel-based proteomics approach.
Musa YR, Bäsell K, Schatschneider S, Vorhölter FJ, Becher D, Niehaus K., J Biotechnol 167(2), 2013
PMID: 23792782
A proteomic study of Xanthomonas oryzae pv. oryzae in rice xylem sap.
González JF, Degrassi G, Devescovi G, De Vleesschauwer D, Höfte M, Myers MP, Venturi V., J Proteomics 75(18), 2012
PMID: 22835776
Cytoplasmic and periplasmic proteomic signatures of exponentially growing cells of the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125.
Wilmes B, Kock H, Glagla S, Albrecht D, Voigt B, Markert S, Gardebrecht A, Bode R, Danchin A, Feller G, Hecker M, Schweder T., Appl Environ Microbiol 77(4), 2011
PMID: 21183643
Salmonella enterica strains belonging to O serogroup 1,3,19 induce chlorosis and wilting of Arabidopsis thaliana leaves.
Berger CN, Brown DJ, Shaw RK, Minuzzi F, Feys B, Frankel G., Environ Microbiol 13(5), 2011
PMID: 21349136
Expression and localization of a Rhizobium-derived cambialistic superoxide dismutase in pea (Pisum sativum) nodules subjected to oxidative stress.
Asensio AC, Marino D, James EK, Ariz I, Arrese-Igor C, Aparicio-Tejo PM, Arredondo-Peter R, Moran JF., Mol Plant Microbe Interact 24(10), 2011
PMID: 21774575
Proteomic approaches to study plant-pathogen interactions.
Quirino BF, Candido ES, Campos PF, Franco OL, Krüger RH., Phytochemistry 71(4), 2010
PMID: 20005547
Corynebacterium diphtheriae invasion-associated protein (DIP1281) is involved in cell surface organization, adhesion and internalization in epithelial cells.
Ott L, Höller M, Gerlach RG, Hensel M, Rheinlaender J, Schäffer TE, Burkovski A., BMC Microbiol 10(), 2010
PMID: 20051108
The extracellular proteome of Rhizobium etli CE3 in exponential and stationary growth phase.
Meneses N, Mendoza-Hernández G, Encarnación S., Proteome Sci 8(), 2010
PMID: 20942974
Proteome of the phytopathogen Xanthomonas citri subsp. citri: a global expression profile.
Soares MR, Facincani AP, Ferreira RM, Moreira LM, de Oliveira JC, Ferro JA, Ferro MI, Meneghini R, Gozzo FC., Proteome Sci 8(), 2010
PMID: 21062441
Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum.
Hempel J, Zehner S, Göttfert M, Patschkowski T., J Biotechnol 140(1-2), 2009
PMID: 19095018
Diminished exoproteome of Frankia spp. in culture and symbiosis.
Mastronunzio JE, Huang Y, Benson DR., Appl Environ Microbiol 75(21), 2009
PMID: 19749056
Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa.
Ryan RP, Fouhy Y, Garcia BF, Watt SA, Niehaus K, Yang L, Tolker-Nielsen T, Dow JM., Mol Microbiol 68(1), 2008
PMID: 18312265
In vivo proteome analysis of Xanthomonas campestris pv. campestris in the interaction with the host plant Brassica oleracea.
Andrade AE, Silva LP, Pereira JL, Noronha EF, Reis FB, Bloch C, dos Santos MF, Domont GB, Franco OL, Mehta A., FEMS Microbiol Lett 281(2), 2008
PMID: 18318710
The outer membrane protein TolC from Sinorhizobium meliloti affects protein secretion, polysaccharide biosynthesis, antimicrobial resistance, and symbiosis.
Cosme AM, Becker A, Santos MR, Sharypova LA, Santos PM, Moreira LM., Mol Plant Microbe Interact 21(7), 2008
PMID: 18533835
Plant-pathogen interactions: what is proteomics telling us?
Mehta A, Brasileiro AC, Souza DS, Romano E, Campos MA, Grossi-de-Sá MF, Silva MS, Franco OL, Fragoso RR, Bevitori R, Rocha TL., FEBS J 275(15), 2008
PMID: 18616468
Requirement of a mip-like gene for virulence in the phytopathogenic bacterium Xanthomonas campestris pv. campestris.
Zang N, Tang DJ, Wei ML, He YQ, Chen B, Feng JX, Xu J, Gan YQ, Jiang BL, Tang JL., Mol Plant Microbe Interact 20(1), 2007
PMID: 17249419
A comprehensive proteome map of the lipid-requiring nosocomial pathogen Corynebacterium jeikeium K411.
Hansmeier N, Chao TC, Daschkey S, Müsken M, Kalinowski J, Pühler A, Tauch A., Proteomics 7(7), 2007
PMID: 17352426
Qualitative and comparative proteomic analysis of Xanthomonas campestris pv. campestris 17.
Chung WJ, Shu HY, Lu CY, Wu CY, Tseng YH, Tsai SF, Lin CH., Proteomics 7(12), 2007
PMID: 17566974
Approaches for the identification of potential excreted/secreted proteins of Leishmania major parasites.
Chenik M, Lakhal S, Ben Khalef N, Zribi L, Louzir H, Dellagi K., Parasitology 132(pt 4), 2006
PMID: 16388694
Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation.
Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G., Cell 125(4), 2006
PMID: 16713565
Identification of genistein-inducible and type III-secreted proteins of Bradyrhizobium japonicum.
Süss C, Hempel J, Zehner S, Krause A, Patschkowski T, Göttfert M., J Biotechnol 126(1), 2006
PMID: 16707185
Mass spectrometry-based proteomics for the detection of plant pathogens.
Padliya ND, Cooper B., Proteomics 6(14), 2006
PMID: 16791831
Bacterial phytopathogens and genome science.
Setubal JC, Moreira LM, da Silva AC., Curr Opin Microbiol 8(5), 2005
PMID: 16125997

34 References

Daten bereitgestellt von Europe PubMed Central.

Onsano, 1992
Resistance gene-dependent plant defense responses.
Hammond-Kosack KE, Jones JD., Plant Cell 8(10), 1996
PMID: 8914325

Somssich, Trends Plant Sci. 3(), 1998

Gomez-Gomez, Trends Plant Sci. 6(), 2000

Felix, J. Biol. Chem. 287(), 2003

Dow, J. Mol. Plant-Microbe Interact. 11(), 1998

Marois, Mol. Plant-Microbe Interac. 15(), 2002
Comparison of the genomes of two Xanthomonas pathogens with differing host specificities.
da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA, Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP., Nature 417(6887), 2002
PMID: 12024217
Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study.
Hirose I, Sano K, Shioda I, Kumano M, Nakamura K, Yamane K., Microbiology (Reading, Engl.) 146 ( Pt 1)(), 2000
PMID: 10658653
Biology of type II secretion.
Sandkvist M., Mol. Microbiol. 40(2), 2001
PMID: 11309111
Type II secretion and pathogenesis.
Sandkvist M., Infect. Immun. 69(6), 2001
PMID: 11349009
Comparative proteomic analysis of extracellular proteins of Edwardsiella tarda.
Tan YP, Lin Q, Wang XH, Joshi S, Hew CL, Leung KY., Infect. Immun. 70(11), 2002
PMID: 12379732

Nielsen, Prot. Engeneer. 10(), 1997

Poplawasky, J. Mol. Plant-Microbe Interact. 11(), 1998

Smith, J. Mol. Plant-Microb Interact. 9(), 1996
Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli.
Rizzitello AE, Harper JR, Silhavy TJ., J. Bacteriol. 183(23), 2001
PMID: 11698367

Wengelnik, J. Bacteriol. 9(), 1996

Gough, Mol. Plant-Microbe Interact. 1(), 1988

Tang, Mol. Gen. Genet. 210(), 1987

Dow, Physiol. Mol. Plant Pathol. 31(), 1987
Purification of a metalloprotease produced by Erwinia carotovora ssp. carotovora and the degradation of potato lectin in vitro.
Heilbronn J, Johnston DJ, Dunbar B, Lyon GD., Physiol. Mol. Plant Pathol. 47(5), 1995
PMID: IND20502586

Antelmann, Mol. Mocrobiol. 49(), 2003
Proteome analysis of the plant pathogen Xylella fastidiosa reveals major cellular and extracellular proteins and a peculiar codon bias distribution.
Smolka MB, Martins-de-Souza D, Martins D, Winck FV, Santoro CE, Castellari RR, Ferrari F, Brum IJ, Galembeck E, Della Coletta Filho H, Machado MA, Marangoni S, Novello JC., Proteomics 3(2), 2003
PMID: 12601815

Glasgow, 1998

Kjeldahl, 1883

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 15619296
PubMed | Europe PMC

Suchen in

Google Scholar