An asymptotic maximum principle for essentially linear evolution models
Baake E, Baake M, Bovier A, Klein M (2005)
JOURNAL OF MATHEMATICAL BIOLOGY 50(1): 83-114.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Baake, EllenUniBi;
Baake, MichaelUniBi;
Bovier, Anton;
Klein, Markus
Einrichtung
Abstract / Bemerkung
Recent work on mutation-selection models has revealed that, under specific assumptions on the fitness function and the mutation rates, asymptotic estimates for the leading eigenvalue of the mutation-reproduction matrix may be obtained through a low-dimensional maximum principle in the limit N --> infinity (where N, or N-d with d greater than or equal to 1, is proportional to the number of types). In order to extend this variational principle to a larger class of models, we consider here a family of reversible matrices of asymptotic dimension N-d and identify conditions under which the high-dimensional Rayleigh-Ritz variational problem may be reduced to a low-dimensional one that yields the leading eigenvalue up to an error term of order 1/N. For a large class of mutation-selection models, this implies estimates for the mean fitness, as well as a concentration result for the ancestral distribution of types.
Stichworte
ancestral distribution;
models;
mutation-selection;
lumping;
asymptotics of leading eigenvalue;
reversibility
Erscheinungsjahr
2005
Zeitschriftentitel
JOURNAL OF MATHEMATICAL BIOLOGY
Band
50
Ausgabe
1
Seite(n)
83-114
ISSN
0303-6812
eISSN
1432-1416
Page URI
https://pub.uni-bielefeld.de/record/1604953
Zitieren
Baake E, Baake M, Bovier A, Klein M. An asymptotic maximum principle for essentially linear evolution models. JOURNAL OF MATHEMATICAL BIOLOGY. 2005;50(1):83-114.
Baake, E., Baake, M., Bovier, A., & Klein, M. (2005). An asymptotic maximum principle for essentially linear evolution models. JOURNAL OF MATHEMATICAL BIOLOGY, 50(1), 83-114. https://doi.org/10.1007/s00285-004-0281-7
Baake, Ellen, Baake, Michael, Bovier, Anton, and Klein, Markus. 2005. “An asymptotic maximum principle for essentially linear evolution models”. JOURNAL OF MATHEMATICAL BIOLOGY 50 (1): 83-114.
Baake, E., Baake, M., Bovier, A., and Klein, M. (2005). An asymptotic maximum principle for essentially linear evolution models. JOURNAL OF MATHEMATICAL BIOLOGY 50, 83-114.
Baake, E., et al., 2005. An asymptotic maximum principle for essentially linear evolution models. JOURNAL OF MATHEMATICAL BIOLOGY, 50(1), p 83-114.
E. Baake, et al., “An asymptotic maximum principle for essentially linear evolution models”, JOURNAL OF MATHEMATICAL BIOLOGY, vol. 50, 2005, pp. 83-114.
Baake, E., Baake, M., Bovier, A., Klein, M.: An asymptotic maximum principle for essentially linear evolution models. JOURNAL OF MATHEMATICAL BIOLOGY. 50, 83-114 (2005).
Baake, Ellen, Baake, Michael, Bovier, Anton, and Klein, Markus. “An asymptotic maximum principle for essentially linear evolution models”. JOURNAL OF MATHEMATICAL BIOLOGY 50.1 (2005): 83-114.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
6 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Robustness and epistasis in mutation-selection models.
Wolff A, Krug J., Phys Biol 6(3), 2009
PMID: 19411737
Wolff A, Krug J., Phys Biol 6(3), 2009
PMID: 19411737
Single-crossover dynamics: finite versus infinite populations.
Baake E, Herms I., Bull Math Biol 70(2), 2008
PMID: 17957409
Baake E, Herms I., Bull Math Biol 70(2), 2008
PMID: 17957409
Diploid biological evolution models with general smooth fitness landscapes and recombination.
Saakian DB, Kirakosyan Z, Hu CK., Phys Rev E Stat Nonlin Soft Matter Phys 77(6 pt 1), 2008
PMID: 18643300
Saakian DB, Kirakosyan Z, Hu CK., Phys Rev E Stat Nonlin Soft Matter Phys 77(6 pt 1), 2008
PMID: 18643300
Mutation, selection, and ancestry in branching models: a variational approach.
Baake E, Georgii HO., J Math Biol 54(2), 2007
PMID: 17075709
Baake E, Georgii HO., J Math Biol 54(2), 2007
PMID: 17075709
Evolution equation of phenotype distribution: general formulation and application to error catastrophe.
Sato K, Kaneko K., Phys Rev E Stat Nonlin Soft Matter Phys 75(6 pt 1), 2007
PMID: 17677302
Sato K, Kaneko K., Phys Rev E Stat Nonlin Soft Matter Phys 75(6 pt 1), 2007
PMID: 17677302
Error thresholds in a mutation-selection model with Hopfield-type fitness.
Garske T., Bull Math Biol 68(7), 2006
PMID: 16841266
Garske T., Bull Math Biol 68(7), 2006
PMID: 16841266
48 References
Daten bereitgestellt von Europe PubMed Central.
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Baake, Phys. Rev. E 57(), 1998
Mutation-selection models solved exactly with methods of statistical mechanics.
Baake E, Wagner H., Genet. Res. 78(1), 2001
PMID: 11556140
Baake E, Wagner H., Genet. Res. 78(1), 2001
PMID: 11556140
AUTHOR UNKNOWN, 0
Bovier, Probab. Theor. Rel. Fields 119(), 2001
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Burke, Ann. Math. Statist. 29(), 1958
AUTHOR UNKNOWN, 0
Charlesworth, Genet. Res. Camb. 55(), 1990
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Eigen, Adv. Chem. Phys. 75(), 1989
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
A maximum principle for the mutation-selection equilibrium of nucleotide sequences.
Garske T, Grimm U., Bull. Math. Biol. 66(3), 2004
PMID: 15006441
Garske T, Grimm U., Bull. Math. Biol. 66(3), 2004
PMID: 15006441
Gayrard, J. Stat. Phys. 68(), 1992
Georgii, Adv. Appl. Prob. 35(), 2003
On the selection and evolution of regulatory DNA motifs.
Gerland U, Hwa T., J. Mol. Evol. 55(4), 2002
PMID: 12355260
Gerland U, Hwa T., J. Mol. Evol. 55(4), 2002
PMID: 12355260
Hadeler, SIAM J. Appl. Math. 41(), 1981
Mutation-selection balance: ancestry, load, and maximum principle.
Hermisson J, Redner O, Wagner H, Baake E., Theor Popul Biol 62(1), 2002
PMID: 12056863
Hermisson J, Redner O, Wagner H, Baake E., Theor Popul Biol 62(1), 2002
PMID: 12056863
Hermisson, J. Stat. Phys. 102(), 2001
Jagers, Stoch. Proc. Appl. 32(), 1989
Jagers, J. Appl. Prob. 29(), 1992
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Deleterious mutations and the evolution of sexual reproduction.
Kondrashov AS., Nature 336(6198), 1988
PMID: 3057385
Kondrashov AS., Nature 336(6198), 1988
PMID: 3057385
AUTHOR UNKNOWN, 0
Leuthäusser, J. Stat. Phys. 48(), 1987
AUTHOR UNKNOWN, 0
Error thresholds of replication in finite populations mutation frequencies and the onset of Muller's ratchet.
Nowak M, Schuster P., J. Theor. Biol. 137(4), 1989
PMID: 2626057
Nowak M, Schuster P., J. Theor. Biol. 137(4), 1989
PMID: 2626057
AUTHOR UNKNOWN, 0
Redner, Edinburgh Math. Soc. 47(), 2004
The solitary wave of asexual evolution.
Rouzine IM, Wakeley J, Coffin JM., Proc. Natl. Acad. Sci. U.S.A. 100(2), 2003
PMID: 12525686
Rouzine IM, Wakeley J, Coffin JM., Proc. Natl. Acad. Sci. U.S.A. 100(2), 2003
PMID: 12525686
AUTHOR UNKNOWN, 0
Error thresholds for molecular quasispecies as phase transitions: From simple landscapes to spin-glass models.
Tarazona P., Phys. Rev., A 45(8), 1992
PMID: 9907704
Tarazona P., Phys. Rev., A 45(8), 1992
PMID: 9907704
Thompson, Math. Biosci. 21(), 1974
Wagner, J. Stat. Phys. 92(), 1998
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 15322822
PubMed | Europe PMC
Suchen in