Design of molecular photonic wires based on multistep electronic excitation transfer

Tinnefeld P, Heilemann M, Sauer M (2005)
CHEMPHYSCHEM 6(2): 217-222.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
Light-harvesting complexes, one of nature's supreme examples of nonoscole engineering, have inspired researchers to construct optical devices, such as photonic wires, which ore optimised for efficient transfer of excited-state energy over large distances. The control parameters for the design and the advantages of single-molecule fluorescence spectroscopy for the study of such complex systems are discussed with respect to energy-transfer mechanisms, chromophore selection and arrangement as well as static and dynamic heterogeneity.
Stichworte
light harvesting; photonic wires; fluorescence spectroscopy; multistep energy transfer; single-molecule studies
Erscheinungsjahr
2005
Zeitschriftentitel
CHEMPHYSCHEM
Band
6
Ausgabe
2
Seite(n)
217-222
ISSN
1439-4235
eISSN
1439-7641
Page URI
https://pub.uni-bielefeld.de/record/1604884

Zitieren

Tinnefeld P, Heilemann M, Sauer M. Design of molecular photonic wires based on multistep electronic excitation transfer. CHEMPHYSCHEM. 2005;6(2):217-222.
Tinnefeld, P., Heilemann, M., & Sauer, M. (2005). Design of molecular photonic wires based on multistep electronic excitation transfer. CHEMPHYSCHEM, 6(2), 217-222. https://doi.org/10.1002/cphc.200400513
Tinnefeld, P, Heilemann, Mike, and Sauer, Markus. 2005. “Design of molecular photonic wires based on multistep electronic excitation transfer”. CHEMPHYSCHEM 6 (2): 217-222.
Tinnefeld, P., Heilemann, M., and Sauer, M. (2005). Design of molecular photonic wires based on multistep electronic excitation transfer. CHEMPHYSCHEM 6, 217-222.
Tinnefeld, P., Heilemann, M., & Sauer, M., 2005. Design of molecular photonic wires based on multistep electronic excitation transfer. CHEMPHYSCHEM, 6(2), p 217-222.
P. Tinnefeld, M. Heilemann, and M. Sauer, “Design of molecular photonic wires based on multistep electronic excitation transfer”, CHEMPHYSCHEM, vol. 6, 2005, pp. 217-222.
Tinnefeld, P., Heilemann, M., Sauer, M.: Design of molecular photonic wires based on multistep electronic excitation transfer. CHEMPHYSCHEM. 6, 217-222 (2005).
Tinnefeld, P, Heilemann, Mike, and Sauer, Markus. “Design of molecular photonic wires based on multistep electronic excitation transfer”. CHEMPHYSCHEM 6.2 (2005): 217-222.

27 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Directional Photonic Wire Mediated by Homo-Förster Resonance Energy Transfer on a DNA Origami Platform.
Nicoli F, Barth A, Bae W, Neukirchinger F, Crevenna AH, Lamb DC, Liedl T., ACS Nano 11(11), 2017
PMID: 29063765
Multichromophoric π-Conjugation: Modular Design for Gated and Cascade Energy Transfer.
Park BG, Hong DH, Lee HY, Lee M, Lee D., Chemistry 22(19), 2016
PMID: 27011263
A low-toxic artificial fluorescent glycoprotein can serve as an efficient cytoplasmic labeling in living cell.
Si J, Liang D, Kong D, Wu S, Yuan L, Xiang Y, Jiang L., Carbohydr Polym 117(), 2015
PMID: 25498627
Excitonic AND Logic Gates on DNA Brick Nanobreadboards.
Cannon BL, Kellis DL, Davis PH, Lee J, Kuang W, Hughes WL, Graugnard E, Yurke B, Knowlton WB., ACS Photonics 2(3), 2015
PMID: 25839049
Structure-based model for light-harvesting properties of nucleic acid nanostructures.
Pan K, Boulais E, Yang L, Bathe M., Nucleic Acids Res 42(4), 2014
PMID: 24311563
Asymmetric dinuclear bis(dipyrrinato)zinc(II) complexes: broad absorption and unidirectional quantitative exciton transmission.
Tsuchiya M, Sakamoto R, Kusaka S, Kitagawa Y, Okumura M, Nishihara H., Chem Commun (Camb) 50(44), 2014
PMID: 24756540
Extending FRET cascades on linear DNA photonic wires.
Spillmann CM, Buckhout-White S, Oh E, Goldman ER, Ancona MG, Medintz IL., Chem Commun (Camb) 50(55), 2014
PMID: 24752334
DNA-multichromophore systems.
Teo YN, Kool ET., Chem Rev 112(7), 2012
PMID: 22424059
Preparation of supramolecular chromophoric assemblies using a DNA duplex.
Kashida H, Asanuma H., Phys Chem Chem Phys 14(20), 2012
PMID: 22532160
Advances in quantitative FRET-based methods for studying nucleic acids.
Preus S, Wilhelmsson LM., Chembiochem 13(14), 2012
PMID: 22936620
Photon cascade with clip-on fluorophores.
Friedrich F, Heckel A., Chemphyschem 12(11), 2011
PMID: 21567707
Self-assembled DNA-based fluorescence waveguide with selectable output.
Hannestad JK, Gerrard SR, Brown T, Albinsson B., Small 7(22), 2011
PMID: 21901828
Challenges and opportunities for structural DNA nanotechnology.
Pinheiro AV, Han D, Shih WM, Yan H., Nat Nanotechnol 6(12), 2011
PMID: 22056726
Macromolecular multi-chromophoric scaffolding.
Schwartz E, Le Gac S, Cornelissen JJ, Nolte RJ, Rowan AE., Chem Soc Rev 39(5), 2010
PMID: 20419211
Binaphthyl-DNA: stacking and fluorescence of a nonplanar aromatic base surrogate in DNA.
Hainke S, Seitz O., Angew Chem Int Ed Engl 48(44), 2009
PMID: 19790219
Single-molecule photophysics of oxazines on DNA and its application in a FRET switch.
Vogelsang J, Cordes T, Tinnefeld P., Photochem Photobiol Sci 8(4), 2009
PMID: 19337662
Polyfluorophore excimers and exciplexes as FRET donors in DNA.
Teo YN, Kool ET., Bioconjug Chem 20(12), 2009
PMID: 19916519
Directed assembly of functional light harvesting antenna complexes onto chemically patterned surfaces.
Escalante M, Maury P, Bruinink CM, van der Werf K, Olsen JD, Timney JA, Huskens J, Neil Hunter C, Subramaniam V, Otto C., Nanotechnology 19(2), 2008
PMID: 21817532
Single-molecule studies of a model fluorenone.
Odoi MY, Hammer NI, Rathnayake HP, Lahti PM, Barnes MD., Chemphyschem 8(10), 2007
PMID: 17533617
Nonmonotonic energy harvesting efficiency in biased exciton chains.
Vlaming SM, Malyshev VA, Knoester J., J Chem Phys 127(15), 2007
PMID: 17949203
Energy transfer in single-molecule photonic wires.
García-Parajó MF, Hernando J, Sanchez Mosteiro G, Hoogenboom JP, van Dijk EM, van Hulst NF., Chemphyschem 6(5), 2005
PMID: 15884064

41 References

Daten bereitgestellt von Europe PubMed Central.

The truth and the hype of hypnosis.
Nash MR., Sci. Am. 285(1), 2001
PMID: 11432194
Photonic structures in biology.
Vukusic P, Sambles JR., Nature 424(6950), 2003
PMID: 12917700

Hu, Phys. Today 50(), 1997

Wagner, J. Am. Chem. Soc. 116(), 1994

Wagner, J. Am. Chem. Soc. 118(), 1996
Weakly coupled molecular photonic wires: synthesis and excited-state energy-transfer dynamics.
Ambroise A, Kirmaier C, Wagner RW, Loewe RS, Bocian DF, Holten D, Lindsey JS., J. Org. Chem. 67(11), 2002
PMID: 12027698
Unraveling the electronic structure of individual photosynthetic pigment-protein complexes
van Oijen AM , Ketelaars M, Kohler J, Aartsma TJ, Schmidt J., Science 285(5426), 1999
PMID: 10411501
Excitation energy transfer dynamics and excited-state structure in chlorosomes of Chlorobium phaeobacteroides.
Psencik J, Ma YZ, Arellano JB, Hala J, Gillbro T., Biophys. J. 84(2 Pt 1), 2003
PMID: 12547796

Förster, Annalen der Physik 2(), 1948
Long-range resonance energy transfer in molecular systems.
Scholes GD., Annu Rev Phys Chem 54(), 2002
PMID: 12471171
Physical chemistry: quantum mechanics for plants.
Fleming GR, Scholes GD., Nature 431(7006), 2004
PMID: 15372016
Photophysical properties of long rodlike meso-meso-linked zinc(II) porphyrins investigated by time-resolved laser spectroscopic methods.
Kim YH, Jeong DH, Kim D, Jeoung SC, Cho HS, Kim SK, Aratani N, Osuka A., J. Am. Chem. Soc. 123(1), 2001
PMID: 11273603

Hernando, Angew. Chem. 116(), 2004

AUTHOR UNKNOWN, Angew. Chem. Int. Ed. 43(), 2004

Vyawahare, Nano Lett. 4(), 2004
Design of multidye systems for FRET-based applications.
Shchepinov MS, Korshun VA., Nucleosides Nucleotides Nucleic Acids 20(4-7), 2001
PMID: 11563049

Dietrich, Rev. Mol. Biotechnol. 82(), 2002
Entropic elasticity of lambda-phage DNA.
Bustamante C, Marko JF, Siggia ED, Smith S., Science 265(5178), 1994
PMID: 8079175
Multistep energy transfer in single molecular photonic wires.
Heilemann M, Tinnefeld P, Sanchez Mosteiro G, Garcia Parajo M, Van Hulst NF, Sauer M., J. Am. Chem. Soc. 126(21), 2004
PMID: 15161254

Seidel, J. Phys. Chem. 100(), 1996

Heinlein, J. Phys. Chem. B 107(), 2003

Tinnefeld, Rec. Res. Devel. Phys. Chem. 7(), 2004

Tinnefeld, J. Phys. Chem. A 107(), 2003

Hofkens, J. Am. Chem. Soc. 122(), 2000

Vosch, J. Phys. Chem. A 107(), 2003

Hofkens, Proc. Natl. Acad. Sci. USA 100(), 2003
Higher-excited-state photophysical pathways in multichromophoric systems revealed by single-molecule fluorescence spectroscopy.
Tinnefeld P, Hofkens J, Herten DP, Masuo S, Vosch T, Cotlet M, Habuchi S, Mullen K, De Schryver FC, Sauer M., Chemphyschem 5(11), 2004
PMID: 15580942

Ohya, Supramol. Chem. 15(), 2003

Calzaferri, Angew. Chem. 115(), 2003

AUTHOR UNKNOWN, Angew. Chem. Int. Ed. 42(), 2003
Semiconductor nanocrystals as fluorescent biological labels.
Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP., Science 281(5385), 1998
PMID: 9748157
Sorting single molecules: application to diagnostics and evolutionary biotechnology.
Eigen M, Rigler R., Proc. Natl. Acad. Sci. U.S.A. 91(13), 1994
PMID: 7517036

Tinnefeld, Angew. Chem. (), 2005

AUTHOR UNKNOWN, Angew. Chem. Int. Ed. (), 2005
Nonvolatile read-out molecular memory.
Liang YC, Dvornikov AS, Rentzepis PM., Proc. Natl. Acad. Sci. U.S.A. 100(14), 2003
PMID: 12829801
On/off blinking and switching behaviour of single molecules of green fluorescent protein.
Dickson RM, Cubitt AB, Tsien RY, Moerner WE., Nature 388(6640), 1997
PMID: 9237752
Organic chemistry: a digital fluorescent molecular photoswitch.
Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T., Nature 420(6917), 2002
PMID: 12490936

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 15751339
PubMed | Europe PMC

Suchen in

Google Scholar