At the pulse of time: protein interactions determine the pace of circadian clocks

Schöning JC, Staiger D (2005)
FEBS LETTERS 579(15): 3246-3252.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
Circadian clocks, internal timekeepers that generate a daily rhythmicity, help organisms to be prepared for periodic environmental changes of light and temperature. These molecular clocks are transcriptional feedback loops that generate 24-h oscillations in the abundance of clock proteins. For the maintenance of this rhythm inside the core clockwork and for its transmission to downstream genes the clock proteins additionally rely on post-transcriptional and post-translational mechanisms. Thus clock proteins engage in a variety of interactions with DNA, RNA and other proteins. Based on the model organisms Drosophila melanogaster and Arahidopsis thaliana molecular principles of eireadian clocks are discussed in this review. (c) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Erscheinungsjahr
Zeitschriftentitel
FEBS LETTERS
Band
579
Ausgabe
15
Seite(n)
3246-3252
ISSN
PUB-ID

Zitieren

Schöning JC, Staiger D. At the pulse of time: protein interactions determine the pace of circadian clocks. FEBS LETTERS. 2005;579(15):3246-3252.
Schöning, J. C., & Staiger, D. (2005). At the pulse of time: protein interactions determine the pace of circadian clocks. FEBS LETTERS, 579(15), 3246-3252. doi:10.1016/j.febslet.2005.03.028
Schöning, J. C., and Staiger, D. (2005). At the pulse of time: protein interactions determine the pace of circadian clocks. FEBS LETTERS 579, 3246-3252.
Schöning, J.C., & Staiger, D., 2005. At the pulse of time: protein interactions determine the pace of circadian clocks. FEBS LETTERS, 579(15), p 3246-3252.
J.C. Schöning and D. Staiger, “At the pulse of time: protein interactions determine the pace of circadian clocks”, FEBS LETTERS, vol. 579, 2005, pp. 3246-3252.
Schöning, J.C., Staiger, D.: At the pulse of time: protein interactions determine the pace of circadian clocks. FEBS LETTERS. 579, 3246-3252 (2005).
Schöning, Jan C., and Staiger, Dorothee. “At the pulse of time: protein interactions determine the pace of circadian clocks”. FEBS LETTERS 579.15 (2005): 3246-3252.
Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

18 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

On the move through time - a historical review of plant clock research.
Johansson M, Köster T., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 29607587
Beyond Transcription: Fine-Tuning of Circadian Timekeeping by Post-Transcriptional Regulation.
Mateos JL, de Leone MJ, Torchio J, Reichel M, Staiger D., Genes (Basel) 9(12), 2018
PMID: 30544736
Time to flower: interplay between photoperiod and the circadian clock.
Johansson M, Staiger D., J Exp Bot 66(3), 2015
PMID: 25371508
Mapping-by-sequencing identifies HvPHYTOCHROME C as a candidate gene for the early maturity 5 locus modulating the circadian clock and photoperiodic flowering in barley.
Pankin A, Campoli C, Dong X, Kilian B, Sharma R, Himmelbach A, Saini R, Davis SJ, Stein N, Schneeberger K, von Korff M., Genetics 198(1), 2014
PMID: 24996910
Spotlight on post-transcriptional control in the circadian system.
Staiger D, Köster T., Cell Mol Life Sci 68(1), 2011
PMID: 20803230
BROTHER OF LUX ARRHYTHMO is a component of the Arabidopsis circadian clock.
Dai S, Wei X, Pei L, Thompson RL, Liu Y, Heard JE, Ruff TG, Beachy RN., Plant Cell 23(3), 2011
PMID: 21447790
Modeling the Drosophila melanogaster circadian oscillator via phase optimization.
Bagheri N, Lawson MJ, Stelling J, Doyle FJ., J Biol Rhythms 23(6), 2008
PMID: 19060261
Regulation of output from the plant circadian clock.
Yakir E, Hilman D, Harir Y, Green RM., FEBS J 274(2), 2007
PMID: 17229141
Salt tolerance (STO), a stress-related protein, has a major role in light signalling.
Indorf M, Cordero J, Neuhaus G, Rodríguez-Franco M., Plant J 51(4), 2007
PMID: 17605755
Reevaluation of Drosophila melanogaster's neuronal circadian pacemakers reveals new neuronal classes.
Shafer OT, Helfrich-Förster C, Renn SC, Taghert PH., J Comp Neurol 498(2), 2006
PMID: 16856134
From in vivo to in silico biology and back.
Di Ventura B, Lemerle C, Michalodimitrakis K, Serrano L., Nature 443(7111), 2006
PMID: 17024084

59 References

Daten bereitgestellt von Europe PubMed Central.

Clock mutants of Drosophila melanogaster.
Konopka RJ, Benzer S., Proc. Natl. Acad. Sci. U.S.A. 68(9), 1971
PMID: 5002428
The cyanobacterial circadian system: a clock apart.
Golden SS, Johnson CH, Kondo T., Curr. Opin. Microbiol. 1(6), 1998
PMID: 10066545
Caenorhabditis elegans has a circadian clock.
Kippert F, Saunders DS, Blaxter ML., Curr. Biol. 12(2), 2002
PMID: 11818076
Molecular machinery of the circadian clock in mammals.
Okamura H, Yamaguchi S, Yagita K., Cell Tissue Res. 309(1), 2002
PMID: 12111536
Slave to the rhythm
Rudolf, The Biochemist 26(), 2004
Phase shifting of the circadian clock by induction of the Drosophila period protein.
Edery I, Rutila JE, Rosbash M., Science 263(5144), 1994
PMID: 8284676
Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless.
Sehgal A, Price JL, Man B, Young MW., Science 263(5153), 1994
PMID: 8128246
Block in nuclear localization of period protein by a second clock mutation, timeless.
Vosshall LB, Price JL, Sehgal A, Saez L, Young MW., Science 263(5153), 1994
PMID: 8128247
Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim.
Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, Steeves TD, Weitz CJ, Takahashi JS, Kay SA., Science 280(5369), 1998
PMID: 9616122
Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms.
Massari ME, Murre C., Mol. Cell. Biol. 20(2), 2000
PMID: 10611221
Molecular cogs of the insect circadian clock.
Shirasu N, Shimohigashi Y, Tominaga Y, Shimohigashi M., Zool. Sci. 20(8), 2003
PMID: 12951399
Phase-specific circadian clock regulatory elements in Arabidopsis.
Michael TP, McClung CR., Plant Physiol. 130(2), 2002
PMID: 12376630
Structural basis for PAS domain heterodimerization in the basic helix--loop--helix-PAS transcription factor hypoxia-inducible factor.
Erbel PJ, Card PB, Karakuzu O, Bruick RK, Gardner KH., Proc. Natl. Acad. Sci. U.S.A. 100(26), 2003
PMID: 14668441
From biological clock to biological rhythms.
Hardin PE., Genome Biol. 1(4), 2000
PMID: 11178250
vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock.
Cyran SA, Buchsbaum AM, Reddy KL, Lin MC, Glossop NR, Hardin PE, Young MW, Storti RV, Blau J., Cell 112(3), 2003
PMID: 12581523
VRILLE feeds back to control circadian transcription of Clock in the Drosophila circadian oscillator.
Glossop NR, Houl JH, Zheng H, Ng FS, Dudek SM, Hardin PE., Neuron 37(2), 2003
PMID: 12546820
Interlocked feedback loops within the Drosophila circadian oscillator.
Glossop NR, Lyons LC, Hardin PE., Science 286(5440), 1999
PMID: 10531060
Kinases and circadian clocks: per goes it alone.
Dunlap JC., Dev. Cell 6(2), 2004
PMID: 14960268
double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation.
Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW., Cell 94(1), 1998
PMID: 9674430
The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon.
Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS, Young MW., Cell 94(1), 1998
PMID: 9674431
Posttranscriptional and posttranslational regulation of clock genes.
Harms E, Kivimae S, Young MW, Saez L., J. Biol. Rhythms 19(5), 2004
PMID: 15534317
Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A.
Sathyanarayanan S, Zheng X, Xiao R, Sehgal A., Cell 116(4), 2004
PMID: 14980226
Crystal structure and interactions of the PAS repeat region of the Drosophila clock protein PERIOD.
Yildiz O, Doi M, Yujnovsky I, Cardone L, Berndt A, Hennig S, Schulze S, Urbanke C, Sassone-Corsi P, Wolf E., Mol. Cell 17(1), 2005
PMID: 15629718
PER protein interactions and temperature compensation of a circadian clock in Drosophila.
Huang ZJ, Curtin KD, Rosbash M., Science 267(5201), 1995
PMID: 7855598
The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila.
Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Rosbash M, Hall JC., Cell 95(5), 1998
PMID: 9845370
Photic signaling by cryptochrome in the Drosophila circadian system.
Lin FJ, Song W, Meyer-Bernstein E, Naidoo N, Sehgal A., Mol. Cell. Biol. 21(21), 2001
PMID: 11585911
The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering.
Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G., Cell 93(7), 1998
PMID: 9657154
Circadian clock mutants in Arabidopsis identified by luciferase imaging.
Millar AJ, Carre IA, Strayer CA, Chua NH, Kay SA., Science 267(5201), 1995
PMID: 7855595
Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog.
Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA., Science 289(5480), 2000
PMID: 10926537
Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock.
Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA., Science 293(5531), 2001
PMID: 11486091
Orchestrated transcription of key pathways in Arabidopsis by the circadian clock.
Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA., Science 290(5499), 2000
PMID: 11118138
Two-component signal transduction pathways in Arabidopsis.
Hwang I, Chen HC, Sheen J., Plant Physiol. 129(2), 2002
PMID: 12068096
Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein.
Sugano S, Andronis C, Green RM, Wang ZY, Tobin EM., Proc. Natl. Acad. Sci. U.S.A. 95(18), 1998
PMID: 9724822
CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis.
Daniel X, Sugano S, Tobin EM., Proc. Natl. Acad. Sci. U.S.A. 101(9), 2004
PMID: 14978263
Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana.
Mas P, Kim WY, Somers DE, Kay SA., Nature 426(6966), 2003
PMID: 14654842
Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock.
Somers DE, Devlin PF, Kay SA., Science 282(5393), 1998
PMID: 9822379
An Arabidopsis circadian clock component interacts with both CRY1 and phyB.
Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM, Ecker JR, Cashmore AR., Nature 410(6827), 2001
PMID: 11260718
ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis.
Somers DE, Schultz TF, Milnamow M, Kay SA., Cell 101(3), 2000
PMID: 10847686
A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene.
Wang ZY, Kenigsbuch D, Sun L, Harel E, Ong MS, Tobin EM., Plant Cell 9(4), 1997
PMID: 9144958
AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana.
Heintzen C, Nater M, Apel K, Staiger D., Proc. Natl. Acad. Sci. U.S.A. 94(16), 1997
PMID: 9238008
The circadian system of Arabidopsis thaliana: forward and reverse genetic approaches.
Staiger D, Heintzen C., Chronobiol. Int. 16(1), 1999
PMID: 10023572
Role for antisense RNA in regulating circadian clock function in Neurospora crassa.
Kramer C, Loros JJ, Dunlap JC, Crosthwaite SK., Nature 421(6926), 2003
PMID: 12607002

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 15943968
PubMed | Europe PMC

Suchen in

Google Scholar