Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation

Luo L, Yao SY, Becker A, Rüberg S, Yu GQ, Zhu JB, Cheng HP (2005)
JOURNAL OF BACTERIOLOGY 187(13): 4562-4572.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Luo, L.; Yao, S. Y.; Becker, Anke; Rüberg, Silvia; Yu, G. Q.; Zhu, J. B.; Cheng, H. P.
Abstract / Bemerkung
The establishment of an effective nitrogen-fixing symbiosis between Sinorhizobium meliloti and its legume host alfalfa (Medicago sativa) depends on the timely expression of nodulation genes that are controlled by LysR-type regulators. Ninety putative genes coding for LysR-type transcriptional regulators were identified in the recently sequenced S. meliloti genome. All 90 putative lysR genes were mutagenized using plasmid insertions as a first step toward determining their roles in symbiosis. Two new LysR-type symbiosis regulator genes, lsrA and lsrB, were identified in the screening. Both the lsrA and lsrB genes are expressed in free-living S. meliloti cells, but they are not required for cell growth. An lsrA1 mutant was defective in symbiosis and elicited only white nodules that exhibited no nitrogenase activity. Cells of the lsrA1 mutant were recovered from the white nodules, suggesting that the lsrA1 mutant was blocked early in nodulation. An lsrB1 mutant was deficient in symbiosis and elicited a mixture of pink and white nodules on alfalfa plants. These plants exhibited lower overall nitrogenase activity than plants inoculated with the wild-type strain, which is consistent with the fact that most of the alfalfa plants inoculated with the lsrB1 mutant were short and yellow. Cells of the lsrB1 mutant were recovered from both pink and white nodules, suggesting that lsrB1 mutants could be blocked at multiple points during nodulation. The identification of two new LysR-type symbiosis transcriptional regulators provides two new avenues for understanding the complex S. meliloti-alfalfa interactions which occur during symbiosis.
Erscheinungsjahr
2005
Zeitschriftentitel
JOURNAL OF BACTERIOLOGY
Band
187
Ausgabe
13
Seite(n)
4562-4572
ISSN
0021-9193
Page URI
https://pub.uni-bielefeld.de/record/1603308

Zitieren

Luo L, Yao SY, Becker A, et al. Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation. JOURNAL OF BACTERIOLOGY. 2005;187(13):4562-4572.
Luo, L., Yao, S. Y., Becker, A., Rüberg, S., Yu, G. Q., Zhu, J. B., & Cheng, H. P. (2005). Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation. JOURNAL OF BACTERIOLOGY, 187(13), 4562-4572. https://doi.org/10.1128/JB.187.13.4562-4572.2005
Luo, L., Yao, S. Y., Becker, Anke, Rüberg, Silvia, Yu, G. Q., Zhu, J. B., and Cheng, H. P. 2005. “Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation”. JOURNAL OF BACTERIOLOGY 187 (13): 4562-4572.
Luo, L., Yao, S. Y., Becker, A., Rüberg, S., Yu, G. Q., Zhu, J. B., and Cheng, H. P. (2005). Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation. JOURNAL OF BACTERIOLOGY 187, 4562-4572.
Luo, L., et al., 2005. Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation. JOURNAL OF BACTERIOLOGY, 187(13), p 4562-4572.
L. Luo, et al., “Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation”, JOURNAL OF BACTERIOLOGY, vol. 187, 2005, pp. 4562-4572.
Luo, L., Yao, S.Y., Becker, A., Rüberg, S., Yu, G.Q., Zhu, J.B., Cheng, H.P.: Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation. JOURNAL OF BACTERIOLOGY. 187, 4562-4572 (2005).
Luo, L., Yao, S. Y., Becker, Anke, Rüberg, Silvia, Yu, G. Q., Zhu, J. B., and Cheng, H. P. “Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation”. JOURNAL OF BACTERIOLOGY 187.13 (2005): 4562-4572.

24 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Transcriptomic Changes in Medicago truncatula and Lotus japonicus Root Nodules during Drought Stress.
Sańko-Sawczenko I, Łotocka B, Mielecki J, Rekosz-Burlaga H, Czarnocka W., Int J Mol Sci 20(5), 2019
PMID: 30857310
An account of evolutionary specialization: the AbcR small RNAs in the Rhizobiales.
Sheehan LM, Caswell CC., Mol Microbiol 107(1), 2018
PMID: 29076560
Sinorhizobium meliloti Glutathione Reductase Is Required for both Redox Homeostasis and Symbiosis.
Tang G, Li N, Liu Y, Yu L, Yan J, Luo L., Appl Environ Microbiol 84(3), 2018
PMID: 29150514
The LsrB Protein Is Required for Agrobacterium tumefaciens Interaction with Host Plants.
Tang G, Li Q, Xing S, Li N, Tang Z, Yu L, Yan J, Li X, Luo L., Mol Plant Microbe Interact 31(9), 2018
PMID: 29547354
Involvement of Glutaredoxin and Thioredoxin Systems in the Nitrogen-Fixing Symbiosis between Legumes and Rhizobia.
Alloing G, Mandon K, Boncompagni E, Montrichard F, Frendo P., Antioxidants (Basel) 7(12), 2018
PMID: 30563061
Regulation of cysteine residues in LsrB proteins from Sinorhizobium meliloti under free-living and symbiotic oxidative stress.
Tang G, Xing S, Wang S, Yu L, Li X, Staehelin C, Yang M, Luo L., Environ Microbiol 19(12), 2017
PMID: 29124841
A LysR-family transcriptional regulator required for virulence in Brucella abortus is highly conserved among the α-proteobacteria.
Sheehan LM, Budnick JA, Blanchard C, Dunman PM, Caswell CC., Mol Microbiol 98(2), 2015
PMID: 26175079
The Sinorhizobium meliloti LysR family transcriptional factor LsrB is involved in regulation of glutathione biosynthesis.
Lu D, Tang G, Wang D, Luo L., Acta Biochim Biophys Sin (Shanghai) 45(10), 2013
PMID: 23883684
The Sinorhizobium meliloti ntrX gene is involved in succinoglycan production, motility, and symbiotic nodulation on alfalfa.
Wang D, Xue H, Wang Y, Yin R, Xie F, Luo L., Appl Environ Microbiol 79(23), 2013
PMID: 24038694
Two-dimensional proteome reference map of Rhizobium tropici PRF 81 reveals several symbiotic determinants and strong resemblance with agrobacteria.
Gomes DF, Batista JS, Torres AR, de Souza Andrade D, Galli-Terasawa LV, Hungria M., Proteomics 12(6), 2012
PMID: 22539436
Sinorhizobium meliloti ExoR is the target of periplasmic proteolysis.
Lu HY, Luo L, Yang MH, Cheng HP., J Bacteriol 194(15), 2012
PMID: 22636773
A portal for rhizobial genomes: RhizoGATE integrates a Sinorhizobium meliloti genome annotation update with postgenome data.
Becker A, Barnett MJ, Capela D, Dondrup M, Kamp PB, Krol E, Linke B, Rüberg S, Runte K, Schroeder BK, Weidner S, Yurgel SN, Batut J, Long SR, Pühler A, Goesmann A., J Biotechnol 140(1-2), 2009
PMID: 19103235
Characteristics of the LrhA subfamily of transcriptional regulators from Sinorhizobium meliloti.
Qi M, Luo L, Cheng H, Zhu J, Yu G., Acta Biochim Biophys Sin (Shanghai) 40(2), 2008
PMID: 18235979
The GntR-type regulators gtrA and gtrB affect cell growth and nodulation of Sinorhizobium meliloti.
Wang Y, Chen AM, Yu AY, Luo L, Yu GQ, Zhu JB, Wang YZ., J Microbiol 46(2), 2008
PMID: 18545962
Mutational analysis of the Sinorhizobium meliloti short-chain dehydrogenase/reductase family reveals substantial contribution to symbiosis and catabolic diversity.
Jacob AI, Adham SA, Capstick DS, Clark SR, Spence T, Charles TC., Mol Plant Microbe Interact 21(7), 2008
PMID: 18533838
Sinorhizobium meliloti, a bacterium lacking the autoinducer-2 (AI-2) synthase, responds to AI-2 supplied by other bacteria.
Pereira CS, McAuley JR, Taga ME, Xavier KB, Miller ST., Mol Microbiol 70(5), 2008
PMID: 18990189
Rhizobium-initiated rice growth inhibition caused by nitric oxide accumulation.
Perrine-Walker FM, Gartner E, Hocart CH, Becker A, Rolfe BG., Mol Plant Microbe Interact 20(3), 2007
PMID: 17378431
Genomes of the symbiotic nitrogen-fixing bacteria of legumes.
MacLean AM, Finan TM, Sadowsky MJ., Plant Physiol 144(2), 2007
PMID: 17556525
Disruption of nifA gene influences multiple cellular processes in Sinorhizobium meliloti.
Gong Z, Zhu J, Yu G, Zou H., J Genet Genomics 34(9), 2007
PMID: 17884688

61 References

Daten bereitgestellt von Europe PubMed Central.

Purification of nitrogenase and crystallization of its Mo-Fe protein.
Burns RC, Hardy RW., Meth. Enzymol. 24(), 1972
PMID: 4362294
A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism.
Cao H, Krishnan G, Goumnerov B, Tsongalis J, Tompkins R, Rahme LG., Proc. Natl. Acad. Sci. U.S.A. 98(25), 2001
PMID: 11724939
Lipopolysaccharide mutants of Rhizobium meliloti are not defective in symbiosis.
Clover RH, Kieber J, Signer ER., J. Bacteriol. 171(7), 1989
PMID: 2738026
An insertional point mutation inactivates NolR repressor in Rhizobium meliloti 1021.
Cren M, Kondorosi A, Kondorosi E., J. Bacteriol. 176(2), 1994
PMID: 8288547
Perception of lipo-chitooligosaccharidic Nod factors in legumes.
Cullimore JV, Ranjeva R, Bono JJ., Trends Plant Sci. 6(1), 2001
PMID: 11164374
Plant responses to nodulation factors.
Downie JA, Walker SA., Curr. Opin. Plant Biol. 2(6), 1999
PMID: 10607652
Purification and characterisation of two GST's forms from Rhizobium leguminosarum with a high affinity to herbicides.
Faraone A, Petrucci M, Paludi D, Aceto A, Dainelli B., Int J Immunopathol Pharmacol 16(1), 2003
PMID: 12578732
Hanging by a thread: invasion of legume plants by rhizobia.
Gage DJ, Margolin W., Curr. Opin. Microbiol. 3(6), 2000
PMID: 11121782
The composite genome of the legume symbiont Sinorhizobium meliloti.
Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J., Science 293(5530), 2001
PMID: 11474104
BioS, a biotin-induced, stationary-phase, and possible LysR-type regulator in Sinorhizobium meliloti.
Heinz EB, Phillips DA, Streit WR., Mol. Plant Microbe Interact. 12(9), 1999
PMID: 10494632
Characterization, cloning and sequence analysis of the inducible Ochrobactrum anthropi AmpC beta-lactamase.
Higgins CS, Avison MB, Jamieson L, Simm AM, Bennett PM, Walsh TR., J. Antimicrob. Chemother. 47(6), 2001
PMID: 11389106
Role of lectins (and rhizobial exopolysaccharides) in legume nodulation.
Hirsch AM., Curr. Opin. Plant Biol. 2(4), 1999
PMID: 10458994
Rhizobium meliloti has three functional copies of the nodD symbiotic regulatory gene.
Honma MA, Ausubel FM., Proc. Natl. Acad. Sci. U.S.A. 84(23), 1987
PMID: 3479806
PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus.
Horsburgh MJ, Clements MO, Crossley H, Ingham E, Foster SJ., Infect. Immun. 69(6), 2001
PMID: 11349039
OxyR: a molecular code for redox-related signaling.
Kim SO, Merchant K, Nudelman R, Beyer WF Jr, Keng T, DeAngelo J, Hausladen A, Stamler JS., Cell 109(3), 2002
PMID: 12015987
Identification of NolR, a negative transacting factor controlling the nod regulon in Rhizobium meliloti.
Kondorosi E, Pierre M, Cren M, Haumann U, Buire M, Hoffmann B, Schell J, Kondorosi A., J. Mol. Biol. 222(4), 1991
PMID: 1840615
Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules.
Leigh JA, Signer ER, Walker GC., Proc. Natl. Acad. Sci. U.S.A. 82(18), 1985
PMID: 3862129
Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival.
LeVier K, Phillips RW, Grippe VK, Roop RM 2nd, Walker GC., Science 287(5462), 2000
PMID: 10741969
Genes and signals in the rhizobium-legume symbiosis.
Long SR., Plant Physiol. 125(1), 2001
PMID: 11154299
Glutathione and homoglutathione synthetases of legume nodules. Cloning, expression, and subcellular localization.
Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC, Clemente MR, Brewin NJ, Becana M., Plant Physiol. 124(3), 2000
PMID: 11080313
The role of microbial surface polysaccharides in the Rhizobium-legume interaction.
Niehaus K, Becker A., Subcell. Biochem. 29(), 1998
PMID: 9594645
Bacteroid formation in the Rhizobium-legume symbiosis.
Oke V, Long SR., Curr. Opin. Microbiol. 2(6), 1999
PMID: 10607628
Key role of bacterial NH(4)(+) metabolism in Rhizobium-plant symbiosis.
Patriarca EJ, Tate R, Iaccarino M., Microbiol. Mol. Biol. Rev. 66(2), 2002
PMID: 12040124
Glutathione S-transferases: gene structure, regulation, and biological function.
Pickett CB, Lu AY., Annu. Rev. Biochem. 58(), 1989
PMID: 2673020
Transcriptional regulation of glutaredoxin and thioredoxin pathways and related enzymes in response to oxidative stress.
Prieto-Alamo MJ, Jurado J, Gallardo-Madueno R, Monje-Casas F, Holmgren A, Pueyo C., J. Biol. Chem. 275(18), 2000
PMID: 10788450

AUTHOR UNKNOWN, 1993
Nitrogen assimilation and global regulation in Escherichia coli.
Reitzer L., Annu. Rev. Microbiol. 57(), 2003
PMID: 12730324

AUTHOR UNKNOWN, 1986
Molecular biology of the LysR family of transcriptional regulators.
Schell MA., Annu. Rev. Microbiol. 47(), 1993
PMID: 8257110
Genetics and genomics of root symbiosis.
Stougaard J., Curr. Opin. Plant Biol. 4(4), 2001
PMID: 11418343
Regulation of syrM and nodD3 in Rhizobium meliloti.
Swanson JA, Mulligan JT, Long SR., Genetics 134(2), 1993
PMID: 8325480
Analysis of a Rhizobium leguminosarum gene encoding a protein homologous to glutathione S-transferases.
Tawfiq Alkafaf NK, Yeoman KH, Wexler M, Hussain H, Johnston AW., Microbiology (Reading, Engl.) 143 ( Pt 3)(), 1997
PMID: 9084165

AUTHOR UNKNOWN, 1999
Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection.
Toledano MB, Kullik I, Trinh F, Baird PT, Schneider TD, Storz G., Cell 78(5), 1994
PMID: 8087856
The Rhizobium-plant symbiosis.
van Rhijn P, Vanderleyden J., Microbiol. Rev. 59(1), 1995
PMID: 7708010
Studies on heterologous expression of Rhizobium meliloti nifA gene and oxygen sensitivity of its product.
Wang SP, Zhu JB, Yu GQ, Wu YF, Shen SJ., Sci. China, Ser. B, Chem. Life Sci. Earth Sci. 34(1), 1991
PMID: 2015065
Luteolin and GroESL modulate in vitro activity of NodD.
Yeh KC, Peck MC, Long SR., J. Bacteriol. 184(2), 2002
PMID: 11751831

AUTHOR UNKNOWN, 1983
Two genes that regulate exopolysaccharide production in Rhizobium meliloti.
Zhan HJ, Leigh JA., J. Bacteriol. 172(9), 1990
PMID: 2118508
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 15968067
PubMed | Europe PMC

Suchen in

Google Scholar