Function of a fly motion-sensitive neuron matches eye movements during free flight

Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M (2005)
PLoS Biology 3(6): e171-1138.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
Erscheinungsjahr
Zeitschriftentitel
PLoS Biology
Band
3
Ausgabe
6
Seite(n)
e171-1138
ISSN
eISSN
PUB-ID

Zitieren

Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M. Function of a fly motion-sensitive neuron matches eye movements during free flight. PLoS Biology. 2005;3(6):e171-1138.
Kern, R., van Hateren, J. H., Michaelis, C., Lindemann, J. P., & Egelhaaf, M. (2005). Function of a fly motion-sensitive neuron matches eye movements during free flight. PLoS Biology, 3(6), e171-1138. doi:10.1371/journal.pbio.0030171
Kern, R., van Hateren, J. H., Michaelis, C., Lindemann, J. P., and Egelhaaf, M. (2005). Function of a fly motion-sensitive neuron matches eye movements during free flight. PLoS Biology 3, e171-1138.
Kern, R., et al., 2005. Function of a fly motion-sensitive neuron matches eye movements during free flight. PLoS Biology, 3(6), p e171-1138.
R. Kern, et al., “Function of a fly motion-sensitive neuron matches eye movements during free flight”, PLoS Biology, vol. 3, 2005, pp. e171-1138.
Kern, R., van Hateren, J.H., Michaelis, C., Lindemann, J.P., Egelhaaf, M.: Function of a fly motion-sensitive neuron matches eye movements during free flight. PLoS Biology. 3, e171-1138 (2005).
Kern, Roland, van Hateren, JH, Michaelis, C, Lindemann, Jens Peter, and Egelhaaf, Martin. “Function of a fly motion-sensitive neuron matches eye movements during free flight”. PLoS Biology 3.6 (2005): e171-1138.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-09-28T07:24:29Z

54 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Efficient encoding of motion is mediated by gap junctions in the fly visual system.
Wang S, Borst A, Zaslavsky N, Tishby N, Segev I., PLoS Comput Biol 13(12), 2017
PMID: 29206224
Evolution of Biological Image Stabilization.
Hardcastle BJ, Krapp HG., Curr Biol 26(20), 2016
PMID: 27780044
Visual motion-sensitive neurons in the bumblebee brain convey information about landmarks during a navigational task.
Mertes M, Dittmar L, Egelhaaf M, Boeddeker N., Front Behav Neurosci 8(), 2014
PMID: 25309374
Spectral inputs and ocellar contributions to a pitch-sensitive descending neuron in the honeybee.
Hung YS, van Kleef JP, Stange G, Ibbotson MR., J Neurophysiol 109(4), 2013
PMID: 23197452
Texture dependence of motion sensing and free flight behavior in blowflies.
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Multi-camera real-time three-dimensional tracking of multiple flying animals.
Straw AD, Branson K, Neumann TR, Dickinson MH., J R Soc Interface 8(56), 2011
PMID: 20630879
Natural visual cues eliciting predator avoidance in fiddler crabs.
Smolka J, Zeil J, Hemmi JM., Proc Biol Sci 278(1724), 2011
PMID: 21490009
Visual response properties of neck motor neurons in the honeybee.
Hung YS, van Kleef JP, Ibbotson MR., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(12), 2011
PMID: 21909972
An olfactory circuit increases the fidelity of visual behavior.
Chow DM, Theobald JC, Frye MA., J Neurosci 31(42), 2011
PMID: 22016537
Processing of horizontal optic flow in three visual interneurons of the Drosophila brain.
Schnell B, Joesch M, Forstner F, Raghu SV, Otsuna H, Ito K, Borst A, Reiff DF., J Neurophysiol 103(3), 2010
PMID: 20089816
The fine structure of honeybee head and body yaw movements in a homing task.
Boeddeker N, Dittmar L, Stürzl W, Egelhaaf M., Proc Biol Sci 277(1689), 2010
PMID: 20147329
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS One 5(2), 2010
PMID: 20179763
Sensor fusion in identified visual interneurons.
Parsons MM, Krapp HG, Laughlin SB., Curr Biol 20(7), 2010
PMID: 20303270
Dynamics of optomotor responses in Drosophila to perturbations in optic flow.
Theobald JC, Ringach DL, Frye MA., J Exp Biol 213(pt 8), 2010
PMID: 20348349
Motion adaptation and the velocity coding of natural scenes.
Barnett PD, Nordström K, O'Carroll DC., Curr Biol 20(11), 2010
PMID: 20537540
Walking modulates speed sensitivity in Drosophila motion vision.
Chiappe ME, Seelig JD, Reiser MB, Jayaraman V., Curr Biol 20(16), 2010
PMID: 20655222
Random stimulation of spider mechanosensory neurons reveals long-lasting excitation by GABA and muscimol.
Pfeiffer K, Panek I, Höger U, French AS, Torkkeli PH., J Neurophysiol 101(1), 2009
PMID: 19004993
Network adaptation improves temporal representation of naturalistic stimuli in Drosophila eye: I dynamics.
Zheng L, Nikolaev A, Wardill TJ, O'Kane CJ, de Polavieja GG, Juusola M., PLoS One 4(1), 2009
PMID: 19180196
Robust models for optic flow coding in natural scenes inspired by insect biology.
Brinkworth RS, O'Carroll DC., PLoS Comput Biol 5(11), 2009
PMID: 19893631
Neurobiology: fly gyro-vision.
Frye MA., Curr Biol 19(24), 2009
PMID: 20064422
Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly.
Lindemann JP, Weiss H, Möller R, Egelhaaf M., Biol Cybern 98(3), 2008
PMID: 18180948
Crossmodal visual input for odor tracking during fly flight.
Duistermars BJ, Frye MA., Curr Biol 18(4), 2008
PMID: 18280156
Vision and the organization of behaviour.
Zeil J, Boeddeker N, Hemmi JM., Curr Biol 18(8), 2008
PMID: 18430625
Sexual dimorphism in the hoverfly motion vision pathway.
Nordström K, Barnett PD, Moyer de Miguel IM, Brinkworth RS, O'Carroll DC., Curr Biol 18(9), 2008
PMID: 18450449
Visuomotor transformation in the fly gaze stabilization system.
Huston SJ, Krapp HG., PLoS Biol 6(7), 2008
PMID: 18651791
Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems.
von der Emde G, Amey M, Engelmann J, Fetz S, Folde C, Hollmann M, Metzen M, Pusch R., J Physiol Paris 102(4-6), 2008
PMID: 18992334
The optokinetic response in wild type and white zebra finches.
Eckmeier D, Bischof HJ., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194(10), 2008
PMID: 18704442
Characterisation of a blowfly male-specific neuron using behaviourally generated visual stimuli.
Trischler C, Boeddeker N, Egelhaaf M., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193(5), 2007
PMID: 17333206
Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons.
Cuntz H, Haag J, Forstner F, Segev I, Borst A., Proc Natl Acad Sci U S A 104(24), 2007
PMID: 17551009
Adaptive motor behavior in insects.
Ritzmann RE, Büschges A., Curr Opin Neurobiol 17(6), 2007
PMID: 18308559
Information and discriminability as measures of reliability of sensory coding.
Grewe J, Weckström M, Egelhaaf M, Warzecha AK., PLoS One 2(12), 2007
PMID: 18091998
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J Neurophysiol 96(3), 2006
PMID: 16687623
Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system.
Heitwerth J, Kern R, van Hateren JH, Egelhaaf M., J Neurophysiol 94(3), 2005
PMID: 15917319

56 References

Daten bereitgestellt von Europe PubMed Central.


Findlay JM, Gilchrist ID., 2003
A survey of active vision in invertebrates
Land MF, Collett TS., 1997
Head movement of flies during visually guided flight
Land MF., 1973
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Neural networks in the cockpit of the fly.
Borst A, Haag J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(6), 2002
PMID: 12122462
Stabilizing gaze in flying blowflies.
Schilstra C, van Hateren JH., Nature 395(6703), 1998
PMID: 9790186
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: Structure and signals
Hausen K., 1982
Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: Receptive field organization and response characteristics
Hausen K., 1982
Neural mechanisms of visual course control in insects
Hausen K, Egelhaaf M., 1989
Synaptic interactions increase optic flow specificity
Horstmann W, Egelhaaf M, Warzecha AK., 2000
Optic flow.
Koenderink JJ., Vision Res. 26(1), 1986
PMID: 3716209
Towards an ecology of motion vision
Eckert MP, Zeil J., 2001

Gibson JJ., 1950
Analysis of neuronal responses in the blowfly visual system to optic flow under natural outdoors conditions
Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J., 2005
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
A calcium-dependent feedback mechanism participates in shaping single NMDA miniature EPSCs.
Umemiya M, Chen N, Raymond LA, Murphy TH., J. Neurosci. 21(1), 2001
PMID: 11150313
Neuronal processing of behaviourally generated optic flow: experiments and model simulations.
Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M., Network 12(3), 2001
PMID: 11563534
Reading a neural code.
Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D., Science 252(5014), 1991
PMID: 2063199
Dynamic response properties of movement detectors: Theoretical analysis and electrophysiological investigation in the visual system of the fly
Egelhaaf M, Reichardt W., 1987
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Response properties and adaptation of neurones sensitive to image motion in the butterfly Papilio aegeus
Maddess T, DuBois R, Ibbotson MR., 1991
Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency
Maddess T, Laughlin SB., 1985
Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowfly, Calliphora erythrocephala
Ruyter R, de, WH, Mastebroek HAK., 1986
Temporal modulation of luminance adapts time constant of fly movement detectors
Borst A, Egelhaaf M., 1987
Adaptation and the temporal delay filter of fly motion detectors.
Harris RA, O'Carroll DC, Laughlin SB., Vision Res. 39(16), 1999
PMID: 10492824
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Adaptation of response transients in fly motion vision. I: Experiments.
Reisenman C, Haag J, Borst A., Vision Res. 43(11), 2003
PMID: 12726835
Adaptation of response transients in fly motion vision. II: Model studies.
Borst A, Reisenman C, Haag J., Vision Res. 43(11), 2003
PMID: 12726836
Adaptive rescaling maximizes information transmission.
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164
Efficiency and ambiguity in an adaptive neural code.
Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR., Nature 412(6849), 2001
PMID: 11518957
A new role of motion adaptation in visual motion pathway of the blowfly
Heitwerth J, Egelhaaf M., 2005
The halteres of the blowfly Calliphora. II. Three-dimensional organization of compensatory reactions to real and simulated rotations
Nalbach G, Hengstenberg R., 1994
The halteres of the blowfly Calliphora I. Kinematics and dynamics
Nalbach G., 1993
Visual input to the efferent control system of a fly's "gyroscope".
Chan WP, Prete F, Dickinson MH., Science 280(5361), 1998
PMID: 9535659
Summation of visual and mechanosensory feedback in Drosophila flight control.
Sherman A, Dickinson MH., J. Exp. Biol. 207(Pt 1), 2004
PMID: 14638840
Short-term synaptic plasticity as a temporal filter.
Fortune ES, Rose GJ., Trends Neurosci. 24(7), 2001
PMID: 11410267
Synaptic mechanisms for coding timing in auditory neurons
Trussell LO., 1999
The optomotor equilibrium of the Drosophila navigation system
Götz KG., 1975

Heisenberg M, Wolf R., 1984
Dynamic properties of two control systems underlying visually guided turning in house-flies
Egelhaaf M., 1987
Intrinsic properties of biological motion detectors prevent the optomotor control system from getting unstable
Warzecha AK, Egelhaaf M., 1996
Optomotor course control in flies with largely asymmetric visual input
Kern R, Egelhaaf M., 2000
Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system.
Theunissen F, Roddey JC, Stufflebeam S, Clague H, Miller JP., J. Neurophysiol. 75(4), 1996
PMID: 8727382
Processing of natural temporal stimuli by macaque retinal ganglion cells.
van Hateren JH, Ruttiger L, Sun H, Lee BB., J. Neurosci. 22(22), 2002
PMID: 12427852

Bendat JS, Piersol AG., 2000
Studies on astronomical time series analysis. III. Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data
Scargle JD., 1989

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 15884977
PubMed | Europe PMC

Suchen in

Google Scholar