Enols are common intermediates in hydrocarbon oxidation

Taatjes CA, Hansen N, McIlroy A, Miller JA, Senosiain JP, Klippenstein SJ, Qi F, Sheng LS, Zhang YW, Cool TA, Wang J, et al. (2005)
SCIENCE 308(5730): 1887-1889.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Taatjes, C. A.; Hansen, N.; McIlroy, A.; Miller, J. A.; Senosiain, J. P.; Klippenstein, S. J.; Qi, F.; Sheng, L. S.; Zhang, Y. W.; Cool, T. A.; Wang, J.; Westmoreland, P. R.
Abstract / Bemerkung
Models for chemical mechanisms of hydrocarbon oxidation rely on spectrometric identification of molecular structures in flames. Carbonyl (keto) compounds are well-established combustion intermediates. However, their less-stable enol tautomers, bearing OH groups adjacent to carbon-carbon double bonds, are not included in standard models. We observed substantial quantities of two-, three-, and four-carbon enols by photoionization mass spectrometry of flames burning representative compounds from modern fuel blends. Concentration profiles demonstrate that enol flame chemistry cannot be accounted for purely by keto-enol tautomerization. Currently accepted hydrocarbon oxidation mechanisms will likely require revision to explain the formation and reactivity, of these unexpected compounds.
Page URI


Taatjes CA, Hansen N, McIlroy A, et al. Enols are common intermediates in hydrocarbon oxidation. SCIENCE. 2005;308(5730):1887-1889.
Taatjes, C. A., Hansen, N., McIlroy, A., Miller, J. A., Senosiain, J. P., Klippenstein, S. J., Qi, F., et al. (2005). Enols are common intermediates in hydrocarbon oxidation. SCIENCE, 308(5730), 1887-1889. https://doi.org/10.1126/science.1112532
Taatjes, C. A., Hansen, N., McIlroy, A., Miller, J. A., Senosiain, J. P., Klippenstein, S. J., Qi, F., et al. 2005. “Enols are common intermediates in hydrocarbon oxidation”. SCIENCE 308 (5730): 1887-1889.
Taatjes, C. A., Hansen, N., McIlroy, A., Miller, J. A., Senosiain, J. P., Klippenstein, S. J., Qi, F., Sheng, L. S., Zhang, Y. W., Cool, T. A., et al. (2005). Enols are common intermediates in hydrocarbon oxidation. SCIENCE 308, 1887-1889.
Taatjes, C.A., et al., 2005. Enols are common intermediates in hydrocarbon oxidation. SCIENCE, 308(5730), p 1887-1889.
C.A. Taatjes, et al., “Enols are common intermediates in hydrocarbon oxidation”, SCIENCE, vol. 308, 2005, pp. 1887-1889.
Taatjes, C.A., Hansen, N., McIlroy, A., Miller, J.A., Senosiain, J.P., Klippenstein, S.J., Qi, F., Sheng, L.S., Zhang, Y.W., Cool, T.A., Wang, J., Westmoreland, P.R., Law, M.E., Kasper, T., Kohse-Höinghaus, K.: Enols are common intermediates in hydrocarbon oxidation. SCIENCE. 308, 1887-1889 (2005).
Taatjes, C. A., Hansen, N., McIlroy, A., Miller, J. A., Senosiain, J. P., Klippenstein, S. J., Qi, F., Sheng, L. S., Zhang, Y. W., Cool, T. A., Wang, J., Westmoreland, P. R., Law, M. E., Kasper, T., and Kohse-Höinghaus, Katharina. “Enols are common intermediates in hydrocarbon oxidation”. SCIENCE 308.5730 (2005): 1887-1889.

55 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Escaping undesired gas-phase chemistry: Microwave-driven selectivity enhancement in heterogeneous catalytic reactors.
Ramirez A, Hueso JL, Abian M, Alzueta MU, Mallada R, Santamaria J., Sci Adv 5(3), 2019
PMID: 30899784
Mid-Infrared Polarization Spectroscopy Measurements of Species Concentrations and Temperature in a Low-Pressure Flame.
Sahlberg AL, Hot D, Lyngbye-Pedersen R, Zhou J, Aldén M, Li Z., Appl Spectrosc 73(6), 2019
PMID: 30556400
Roaming-Mediated CH2NH Elimination from the Ionization of Aromatic Ethylamines.
Zhang M, Guo H, Zhang L., ChemistryOpen 6(1), 2017
PMID: 28168149
Radicals derived from acetaldehyde and vinyl alcohol.
Estep ML, Morgan WJ, Winkles AT, Abbott AS, Villegas-Escobar N, Mullinax JW, Turner WE, Wang X, Turney JM, Schaefer HF., Phys Chem Chem Phys 19(40), 2017
PMID: 28868538
Vacuum Ultraviolet Photoionization of Complex Chemical Systems.
Kostko O, Bandyopadhyay B, Ahmed M., Annu Rev Phys Chem 67(), 2016
PMID: 26980311
The vacuum ultraviolet beamline/endstations at NSRL dedicated to combustion research.
Zhou Z, Du X, Yang J, Wang Y, Li C, Wei S, Du L, Li Y, Qi F, Wang Q., J Synchrotron Radiat 23(pt 4), 2016
PMID: 27359154
Formation and emission of large furans and oxygenated hydrocarbons from flames.
Johansson KO, Dillstrom T, Monti M, El Gabaly F, Campbell MF, Schrader PE, Popolan-Vaida DM, Richards-Henderson NK, Wilson KR, Violi A, Michelsen HA., Proc Natl Acad Sci U S A 113(30), 2016
PMID: 27410045
Combustion Chemistry Diagnostics for Cleaner Processes.
Kohse-Höinghaus K., Chemistry 22(38), 2016
PMID: 27440049
A shock tube study of the branching ratios of propene + OH reaction.
Badra J, Khaled F, Giri BR, Farooq A., Phys Chem Chem Phys 17(4), 2015
PMID: 25493300
Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD.
Garcia GA, Tang X, Gil JF, Nahon L, Ward M, Batut S, Fittschen C, Taatjes CA, Osborn DL, Loison JC., J Chem Phys 142(16), 2015
PMID: 25933756
High-resolution vacuum-ultraviolet photoabsorption spectra of 1-butyne and 2-butyne.
Jacovella U, Holland DM, Boyé-Péronne S, Gans B, de Oliveira N, Joyeux D, Archer LE, Lucchese RR, Xu H, Pratt ST., J Chem Phys 143(3), 2015
PMID: 26203024
Research frontiers in the chemistry of Criegee intermediates and tropospheric ozonolysis.
Taatjes CA, Shallcross DE, Percival CJ., Phys Chem Chem Phys 16(5), 2014
PMID: 24096945
In situ flame chemistry tracing by imaging photoelectron photoion coincidence spectroscopy.
Osswald P, Hemberger P, Bierkandt T, Akyildiz E, Köhler M, Bodi A, Gerber T, Kasper T., Rev Sci Instrum 85(2), 2014
PMID: 24593390
Flame experiments at the advanced light source: new insights into soot formation processes.
Hansen N, Skeen SA, Michelsen HA, Wilson KR, Kohse-Höinghaus K., J Vis Exp (87), 2014
PMID: 24894694
Nonadiabatic reaction mechanisms of the O((3)P) with cyclopentene.
Zhao H, Liu K, Song D, Su H., J Mol Graph Model 51(), 2014
PMID: 24934330
A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system.
Oldham JM, Abeysekera C, Joalland B, Zack LN, Prozument K, Sims IR, Park GB, Field RW, Suits AG., J Chem Phys 141(15), 2014
PMID: 25338889
Photoelectron-photoion coincidence spectroscopy for multiplexed detection of intermediate species in a flame.
Krüger J, Garcia GA, Felsmann D, Moshammer K, Lackner A, Brockhinke A, Nahon L, Kohse-Höinghaus K., Phys Chem Chem Phys 16(41), 2014
PMID: 25237782
Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO.
Taatjes CA, Welz O, Eskola AJ, Savee JD, Scheer AM, Shallcross DE, Rotavera B, Lee EP, Dyke JM, Mok DK, Osborn DL, Percival CJ., Science 340(6129), 2013
PMID: 23580524
Tran LS, Glaude PA, Fournet R, Battin-Leclerc F., Energy Fuels 27(4), 2013
PMID: 23712124
A miniature high repetition rate shock tube.
Tranter RS, Lynch PT., Rev Sci Instrum 84(9), 2013
PMID: 24089840
Direct kinetic measurements of Criegee intermediate (CH₂OO) formed by reaction of CH₂I with O₂.
Welz O, Savee JD, Osborn DL, Vasu SS, Percival CJ, Shallcross DE, Taatjes CA., Science 335(6065), 2012
PMID: 22246773
Near-threshold shape resonance in the photoionization of 2-butyne.
Xu H, Jacovella U, Ruscic B, Pratt ST, Lucchese RR., J Chem Phys 136(15), 2012
PMID: 22519322
Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone.
Taatjes CA, Welz O, Eskola AJ, Savee JD, Osborn DL, Lee EP, Dyke JM, Mok DW, Shallcross DE, Percival CJ., Phys Chem Chem Phys 14(30), 2012
PMID: 22481381
Thermal decomposition of CH3CHO studied by matrix infrared spectroscopy and photoionization mass spectroscopy.
Vasiliou AK, Piech KM, Reed B, Zhang X, Nimlos MR, Ahmed M, Golan A, Kostko O, Osborn DL, David DE, Urness KN, Daily JW, Stanton JF, Ellison GB., J Chem Phys 137(16), 2012
PMID: 23126711
Fuel-specific influences on the composition of reaction intermediates in premixed flames of three C5H10O2 ester isomers.
Yang B, Westbrook CK, Cool TA, Hansen N, Kohse-Höinghaus K., Phys Chem Chem Phys 13(15), 2011
PMID: 21409253
An experimental and kinetic investigation of premixed furan/oxygen/argon flames.
Tian Z, Yuan T, Fournet R, Glaude PA, Sirjean B, Battin-Leclerc F, Zhang K, Qi F., Combust Flame 158(4), 2011
PMID: 23814311
Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models.
Battin-Leclerc F, Blurock E, Bounaceur R, Fournet R, Glaude PA, Herbinet O, Sirjean B, Warth V., Chem Soc Rev 40(9), 2011
PMID: 21597604
Product branching from the CH2CH2OH radical intermediate of the OH + ethene reaction.
Ratliff BJ, Alligood BW, Butler LJ, Lee SH, Lin JJ., J Phys Chem A 115(33), 2011
PMID: 21749105
Battin-Leclerc F, Herbinet O, Glaude PA, Fournet R, Zhou Z, Deng L, Guo H, Xie M, Qi F., Proc Combust Inst 33(1), 2011
PMID: 23700382
Electronically excited and ionized states of the CH2CH2OH radical: a theoretical study.
Karpichev B, Koziol L, Diri K, Reisler H, Krylov AI., J Chem Phys 132(11), 2010
PMID: 20331298
Experimental confirmation of the low-temperature oxidation scheme of alkanes.
Battin-Leclerc F, Herbinet O, Glaude PA, Fournet R, Zhou Z, Deng L, Guo H, Xie M, Qi F., Angew Chem Int Ed Engl 49(18), 2010
PMID: 20391420
Chemical dynamics, molecular energetics, and kinetics at the synchrotron.
Leone SR, Ahmed M, Wilson KR., Phys Chem Chem Phys 12(25), 2010
PMID: 20419177
Biofuel combustion chemistry: from ethanol to biodiesel.
Kohse-Höinghaus K, Osswald P, Cool TA, Kasper T, Hansen N, Qi F, Westbrook CK, Westmoreland PR., Angew Chem Int Ed Engl 49(21), 2010
PMID: 20446278
Carboxylic acid catalyzed keto-enol tautomerizations in the gas phase.
da Silva G., Angew Chem Int Ed Engl 49(41), 2010
PMID: 20821783
A mechanistic study on the photodegradation of Irgarol-1051 in natural seawater.
Lam KH, Lei NY, Tsang VW, Cai Z, Leung KM, Lam MH., Mar Pollut Bull 58(2), 2009
PMID: 18977497
The reaction between propene and hydroxyl.
Zádor J, Jasper AW, Miller JA., Phys Chem Chem Phys 11(46), 2009
PMID: 19924340
A combined ab initio and photoionization mass spectrometric study of polyynes in fuel-rich flames.
Hansen N, Klippenstein SJ, Westmoreland PR, Kasper T, Kohse-Höinghaus K, Wang J, Cool TA., Phys Chem Chem Phys 10(3), 2008
PMID: 18174978
"Imaging" combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry.
Taatjes CA, Hansen N, Osborn DL, Kohse-Höinghaus K, Cool TA, Westmoreland PR., Phys Chem Chem Phys 10(1), 2008
PMID: 18075680
Combinatorial approaches for mass spectra recalibration.
Böcker S, Mäkinen V., IEEE/ACM Trans Comput Biol Bioinform 5(1), 2008
PMID: 18245878
Low temperature plasma diagnostics with tunable synchrotron vacuum ultraviolet photoionization mass spectrometry.
Wang J, Li Y, Tian Z, Zhang T, Qi F, Tao X., Rev Sci Instrum 79(10), 2008
PMID: 19044711
Study on combustion of gasoline/MTBE in laminar flame with synchrotron radiation.
Yao C, Li J, Li Q, Huang C, Wei L, Wang J, Tian Z, Li Y, Qi F., Chemosphere 67(10), 2007
PMID: 17258275
Kinetics and mechanism of the reactions of CH3CO and CH3C(O)CH2 radicals with O2. Low-pressure discharge flow experiments and quantum chemical computations.
Kovács G, Zádor J, Farkas E, Nádasdi R, Szilágyi I, Dóbé S, Bérces T, Márta F, Lendvay G., Phys Chem Chem Phys 9(31), 2007
PMID: 17687464
Determination of absolute photoionization cross sections of the phenyl radical.
Sveum NE, Goncher SJ, Neumark DM., Phys Chem Chem Phys 8(5), 2006
PMID: 16482301
Direct identification of propargyl radical in combustion flames by vacuum ultraviolet photoionization mass spectrometry.
Zhang T, Tang XN, Lau KC, Ng CY, Nicolas C, Peterka DS, Ahmed M, Morton ML, Ruscic B, Yang R, Wei LX, Huang CQ, Yang B, Wang J, Sheng LS, Zhang YW, Qi F., J Chem Phys 124(7), 2006
PMID: 16497031

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 15890844
PubMed | Europe PMC

Suchen in

Google Scholar