Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system

Heitwerth J, Kern R, van Hateren JH, Egelhaaf M (2005)
J Neurophysiol. 94(3): 1761-1769.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Heitwerth, J; Kern, RolandUniBi ; van Hateren, JH; Egelhaaf, MartinUniBi
Abstract / Bemerkung
Neurons sensitive to visual motion change their response properties during prolonged motion stimulation. These changes have been interpreted as adaptive and were concluded, for instance, to adjust the sensitivity of the visual motion pathway to velocity changes or to increase the reliability of encoding of motion information. These conclusions are based on experiments with experimenter-designed motion stimuli that differ substantially with respect to their dynamical properties from the optic flow an animal experiences during normal behavior. We analyze for the first time motion adaptation under natural stimulus conditions. The experiments are done on the H1-cell, an identified neuron in the blowfly visual motion pathway that has served in many previous studies as a model system for visual motion computation. We reconstructed optic flow perceived by a blowfly in free flight and used this behaviorally generated optic flow to study motion adaptation. A variety of measures (variability in spike count, response latency, jitter of spike timing) suggests that the coding quality does not improve with prolonged stimulation. However, although the number of spikes decreases considerably during stimulation with natural optic flow, the amount of information that is conveyed stays nearly constant. Thus the information per spike increases, and motion adaptation leads to parsimonious coding without sacrificing the reliability with which behaviorally relevant information is encoded.
Erscheinungsjahr
2005
Zeitschriftentitel
J Neurophysiol.
Band
94
Ausgabe
3
Seite(n)
1761-1769
ISSN
0022-3077
eISSN
1522-1598
Page URI
https://pub.uni-bielefeld.de/record/1602516

Zitieren

Heitwerth J, Kern R, van Hateren JH, Egelhaaf M. Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system. J Neurophysiol. 2005;94(3):1761-1769.
Heitwerth, J., Kern, R., van Hateren, J. H., & Egelhaaf, M. (2005). Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system. J Neurophysiol., 94(3), 1761-1769. https://doi.org/10.1152/jn.00308.2005
Heitwerth, J, Kern, Roland, van Hateren, JH, and Egelhaaf, Martin. 2005. “Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system”. J Neurophysiol. 94 (3): 1761-1769.
Heitwerth, J., Kern, R., van Hateren, J. H., and Egelhaaf, M. (2005). Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system. J Neurophysiol. 94, 1761-1769.
Heitwerth, J., et al., 2005. Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system. J Neurophysiol., 94(3), p 1761-1769.
J. Heitwerth, et al., “Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system”, J Neurophysiol., vol. 94, 2005, pp. 1761-1769.
Heitwerth, J., Kern, R., van Hateren, J.H., Egelhaaf, M.: Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system. J Neurophysiol. 94, 1761-1769 (2005).
Heitwerth, J, Kern, Roland, van Hateren, JH, and Egelhaaf, Martin. “Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system”. J Neurophysiol. 94.3 (2005): 1761-1769.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:03Z
MD5 Prüfsumme
1af8b2ebf0db4bdd4be4636f2de11d48


9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Local motion adaptation enhances the representation of spatial structure at EMD arrays.
Li J, Lindemann JP, Egelhaaf M., PLoS Comput Biol 13(12), 2017
PMID: 29281631
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Inhibition of adult rat retinal ganglion cells by D1-type dopamine receptor activation.
Hayashida Y, Rodríguez CV, Ogata G, Partida GJ, Oi H, Stradleigh TW, Lee SC, Colado AF, Ishida AT., J Neurosci 29(47), 2009
PMID: 19940196
Adaptation of firing rate and spike-timing precision in the avian cochlear nucleus.
Kuznetsova MS, Higgs MH, Spain WJ., J Neurosci 28(46), 2008
PMID: 19005056

50 References

Daten bereitgestellt von Europe PubMed Central.

An energy budget for signaling in the grey matter of the brain.
Attwell D, Laughlin SB., J. Cereb. Blood Flow Metab. 21(10), 2001
PMID: 11598490

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Adaptation without parameter change: Dynamic gain control in motion detection.
Borst A, Flanagin VL, Sompolinsky H., Proc. Natl. Acad. Sci. U.S.A. 102(17), 2005
PMID: 15833815
Effects of mean firing on neural information rate.
Borst A, Haag J., J Comput Neurosci 10(2), 2001
PMID: 11361260
Adaptation of response transients in fly motion vision. II: Model studies.
Borst A, Reisenman C, Haag J., Vision Res. 43(11), 2003
PMID: 12726836
Synergy in a neural code.
Brenner N, Strong SP, Koberle R, Bialek W, de Ruyter van Steveninck RR., Neural Comput 12(7), 2000
PMID: 10935917

AUTHOR UNKNOWN, 0
Reproducibility and variability in neural spike trains.
de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W., Science 275(5307), 1997
PMID: 9065407

AUTHOR UNKNOWN, 0
Accuracy of velocity estimation by Reichardt correlators.
Dror RO, O'Carroll DC, Laughlin SB., J Opt Soc Am A Opt Image Sci Vis 18(2), 2001
PMID: 11205969

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Efficiency and ambiguity in an adaptive neural code.
Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR., Nature 412(6849), 2001
PMID: 11518957

AUTHOR UNKNOWN, 0
Afterimages in fly motion vision.
Harris RA, O'Carroll DC., Vision Res. 42(14), 2002
PMID: 12127104
Adaptation and the temporal delay filter of fly motion detectors.
Harris RA, O'Carroll DC, Laughlin SB., Vision Res. 39(16), 1999
PMID: 10492824
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Neuronal adaptation to visual motion in area MT of the macaque.
Kohn A, Movshon JA., Neuron 39(4), 2003
PMID: 12925281
Adaptation changes the direction tuning of macaque MT neurons.
Kohn A, Movshon JA., Nat. Neurosci. 7(7), 2004
PMID: 15195097

AUTHOR UNKNOWN, 0
Neural coding of naturalistic motion stimuli.
Lewen GD, Bialek W, de Ruyter van Steveninck RR., Network 12(3), 2001
PMID: 11563532
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
The role of spike timing in the coding of stimulus location in rat somatosensory cortex.
Panzeri S, Petersen RS, Schultz SR, Lebedev M, Diamond ME., Neuron 29(3), 2001
PMID: 11301035
Adaptation of response transients in fly motion vision. I: Experiments.
Reisenman C, Haag J, Borst A., Vision Res. 43(11), 2003
PMID: 12726835
Stabilizing gaze in flying blowflies.
Schilstra C, van Hateren JH., Nature 395(6703), 1998
PMID: 9790186

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
The waterfall illusion in an insect visual system.
Srinivasan MV, Dvorak DR., Vision Res. 19(12), 1979
PMID: 575245

AUTHOR UNKNOWN, 0
The statistical reliability of signals in single neurons in cat and monkey visual cortex.
Tolhurst DJ, Movshon JA, Dean AF., Vision Res. 23(8), 1983
PMID: 6623937
Function and coding in the blowfly H1 neuron during naturalistic optic flow.
van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M., J. Neurosci. 25(17), 2005
PMID: 15858060

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
The response variability of striate cortical neurons in the behaving monkey.
Vogels R, Spileers W, Orban GA., Exp Brain Res 77(2), 1989
PMID: 2792290
Variability in spike trains during constant and dynamic stimulation.
Warzecha AK, Egelhaaf M., Science 283(5409), 1999
PMID: 10082467

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 15917319
PubMed | Europe PMC

Suchen in

Google Scholar