Cholesterol reduces membrane electroporation and electric deformation of small bilayer vesicles

Kakorin S, Brinkmann U, Neumann E (2005)
BIOPHYSICAL CHEMISTRY 117(2): 155-171.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Electric fields, similar in the order of magnitude of the natural membrane fields of cellular lipid/protein membranes, and chemical relaxation spectrometry can be used as tools to quantify the rigidifying effect of cholesterol in membranes. Small unilamellar vesicles of radius a = 50 +/- 3 nm, prepared form phosphatidylcholine, phosphatidylserine and phosphatidyl-glycerol in the molar ratio 1:1:1 and containing the optical lipid probe molecule 2-(3-diphenyl-hexatrienyl) propanoyl)-l-paimitoyl-sn-glycerol-3-phosphocholine (beta-DPH pPC), serve as examples for curved lipid membranes. The data of electrooptical turbidity and absorbance relaxations at the wavelength lambda = 365 nm are analysed in terms of membrane bending rigidity K and membrane stretching modulus K. Both kappa and K increase with increasing mole fraction x of cholesterol up to x = 0.5. The cholesterol induced denser packing of the lipids reduces the extent of both membrane electroporation (ME) and electroelongation of the vesicles. Further on, cholesterol in the lipid phase and sucrose in the aqueous suspension reduce the extent of membrane undulation and electro-stretching. (c) 2005 Elsevier B.V All rights reserved.
Erscheinungsjahr
Zeitschriftentitel
BIOPHYSICAL CHEMISTRY
Band
117
Ausgabe
2
Seite(n)
155-171
ISSN
PUB-ID

Zitieren

Kakorin S, Brinkmann U, Neumann E. Cholesterol reduces membrane electroporation and electric deformation of small bilayer vesicles. BIOPHYSICAL CHEMISTRY. 2005;117(2):155-171.
Kakorin, S., Brinkmann, U., & Neumann, E. (2005). Cholesterol reduces membrane electroporation and electric deformation of small bilayer vesicles. BIOPHYSICAL CHEMISTRY, 117(2), 155-171. doi:10.1016/j.bpc.2005.05.001
Kakorin, S., Brinkmann, U., and Neumann, E. (2005). Cholesterol reduces membrane electroporation and electric deformation of small bilayer vesicles. BIOPHYSICAL CHEMISTRY 117, 155-171.
Kakorin, S., Brinkmann, U., & Neumann, E., 2005. Cholesterol reduces membrane electroporation and electric deformation of small bilayer vesicles. BIOPHYSICAL CHEMISTRY, 117(2), p 155-171.
S. Kakorin, U. Brinkmann, and E. Neumann, “Cholesterol reduces membrane electroporation and electric deformation of small bilayer vesicles”, BIOPHYSICAL CHEMISTRY, vol. 117, 2005, pp. 155-171.
Kakorin, S., Brinkmann, U., Neumann, E.: Cholesterol reduces membrane electroporation and electric deformation of small bilayer vesicles. BIOPHYSICAL CHEMISTRY. 117, 155-171 (2005).
Kakorin, Sergej, Brinkmann, U., and Neumann, Eberhard. “Cholesterol reduces membrane electroporation and electric deformation of small bilayer vesicles”. BIOPHYSICAL CHEMISTRY 117.2 (2005): 155-171.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols.
Casciola M, Bonhenry D, Liberti M, Apollonio F, Tarek M., Bioelectrochemistry 100(), 2014
PMID: 24731593
A polarizable coarse-grained water model for dissipative particle dynamics.
Peter EK, Pivkin IV., J Chem Phys 141(16), 2014
PMID: 25362324
Cholesterol implications in plasmid DNA electrotransfer: Evidence for the involvement of endocytotic pathways.
Rosazza C, Phez E, Escoffre JM, Cézanne L, Zumbusch A, Rols MP., Int J Pharm 423(1), 2012
PMID: 21601622
Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models.
Chrast R, Saher G, Nave KA, Verheijen MH., J Lipid Res 52(3), 2011
PMID: 21062955
Giant unilamellar vesicles containing phosphatidylinositol(4,5)bisphosphate: characterization and functionality.
Carvalho K, Ramos L, Roy C, Picart C, Picart C., Biophys J 95(9), 2008
PMID: 18502807
Adsorption of DNA and electric fields decrease the rigidity of lipid vesicle membranes.
Frantescu A, Kakorin S, Toensing K, Neumann E., Phys Chem Chem Phys 7(24), 2005
PMID: 16474877

61 References

Daten bereitgestellt von Europe PubMed Central.

The function of sterols in membranes.
Demel RA, De Kruyff B., Biochim. Biophys. Acta 457(2), 1976
PMID: 184844
Cholesterol and the cell membrane.
Yeagle PL., Biochim. Biophys. Acta 822(3-4), 1985
PMID: 3904832
Interaction between cholesterol and phospholipid in hydrated bilayers
Finean, Chem. Phys. Lipids 54(), 1990
Phospholipid vesicles and other cholesterol carriers in bile.
Gilat T, Somjen GJ., Biochim. Biophys. Acta 1286(2), 1996
PMID: 8652613
Where does cholesterol act during activation of the nicotinic acetylcholine receptor?
Addona GH, Sandermann H Jr, Kloczewiak MA, Husain SS, Miller KW., Biochim. Biophys. Acta 1370(2), 1998
PMID: 9545586
Functional rafts in cell membranes.
Simons K, Ikonen E., Nature 387(6633), 1997
PMID: 9177342
Microdomains of GPI-anchored proteins in living cells revealed by crosslinking.
Friedrichson T, Kurzchalia TV., Nature 394(6695), 1998
PMID: 9723622
Bending rigidity of SOPC membranes containing cholesterol.
Song J, Waugh RE., Biophys. J. 64(6), 1993
PMID: 8369417

Seifert, 1995

Sackmann, 1995
Shape modification of phospholipid vesicles induced by high pressure: influence of bilayer compressibility.
Beney L, Perrier-Cornet JM, Hayert M, Gervais P., Biophys. J. 72(3), 1997
PMID: 9138571
Amiodarone effects on membrane organization evaluated by fluorescence polarization.
Antunes-Madeira MC, Videira RA, Kluppel ML, Madeira VV., Int. J. Cardiol. 48(3), 1995
PMID: 7782133
Gene transfer into mouse lyoma cells by electroporation in high electric fields.
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH., EMBO J. 1(7), 1982
PMID: 6329708
Permeability changes induced by electric impulses in vesicular membranes.
Neumann E, Rosenheck K., J. Membr. Biol. 10(3), 1972
PMID: 4667921
Digression on membrane electroporation and electroporative delivery of drugs and genes
Neumann, Radiol. Oncol. 32(), 1998
Electrooptics of membrane electroporation and vesicle shape deformation
Neumann, Curr. Opin. Colloid Interface Sci. 1(), 1996
Membrane electroporation and electromechanical deformation of vesicle and cells
Neumann, Faraday Discuss. 111(), 1998

AUTHOR UNKNOWN, 0
Annexin V and vesicle membrane electroporation.
Tonsing K, Kakorin S, Neumann E, Liemann S, Huber R., Eur. Biophys. J. 26(4), 1997
PMID: 9378099
Chemical electrooptics and linear dichroism of polyelectroytes and colloids
Neumann, Ber. Bunsenges. Phys. Chem. 100(), 1996
Kinetics of the electroporative deformation of lipid vesicles and biological cells in an electric field
Kakorin, Ber. Bunsenges. Phys. Chem. 102(), 1998
Conformation changes in rRNA induced by electric impulses.
Revzin A, Neumann E., Biophys. Chem. 2(2), 1974
PMID: 4611518
The structure and conformation of amphiphilic membranes
Zeks, 1992
Light scattering by a core-mantle spheroidal particle.
Farafonov VG, Voshchinnikov NV, Somsikov VV., Appl Opt 35(27), 1996
PMID: 21127540
Conductometric and electrooptic relaxation spectrometry of lipid vesicle electroporation at high fields
Griese, Phys. Chem. Chem. Phys. 4(), 2002
Electroporative deformation of salt-filled lipid vesicles
Kakorin, Eur. Biophys. J. 27(), 1998

Komura, 1996
Membrane curvature and high-field electroporation of lipid bilayer vesicles
Kakorin, J. Phys. Chem., B 107(), 2003
The relaxation hysteresis of membrane electroporation
Neumann, 1989
Gerhard schwarz: scientist and colleague
Neuman E, Winterhalter M., Biophys. Chem. 85(2-3), 2000
PMID: 10961499
Mechanism for the conductivity changes caused by membrane electroporation of CHO cell—pellets
Schmeer, Phys. Chem. Chem. Phys. (), 2004
Chemical electric field effects in biological macromolecules.
Neumann E., Prog. Biophys. Mol. Biol. 47(3), 1986
PMID: 3544052
A theory of fluorescence polarization decay in membranes.
Kinosita K Jr, Kawato S, Ikegami A., Biophys. J. 20(3), 1977
PMID: 922121
Light scattering and turbidity measurements on lipid vesicles.
Chong CS, Colbow K., Biochim. Biophys. Acta 436(2), 1976
PMID: 1276217
Electrooptical studies of membrane electroporation in lipid vesicles
Kakorin, Colloids Surf., A Physicochem. Eng. Asp. 209(), 2002
Structure of the fully hydrated gel phase of dipalmitoylphosphatidylcholine.
Wiener MC, Suter RM, Nagle JF., Biophys. J. 55(2), 1989
PMID: 2713445

McIntosh, 1993
Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles.
Kakorin S, Stoylov SP, Neumann E., Biophys. Chem. 58(1-2), 1996
PMID: 8679914
Calculations of the electrostatic potential adjacent to model phospholipid bilayers.
Peitzsch RM, Eisenberg M, Sharp KA, McLaughlin S., Biophys. J. 68(3), 1995
PMID: 7756540
The effect of cholesterol on the structure of phosphatidylcholine bilayers.
McIntosh TJ., Biochim. Biophys. Acta 513(1), 1978
PMID: 718889
Influence of cholesterol on phospholipid bilayers phase domains as detected by Laurdan fluorescence.
Parasassi T, Di Stefano M, Loiero M, Ravagnan G, Gratton E., Biophys. J. 66(1), 1994
PMID: 8130331
Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe.
Parasassi T, Di Stefano M, Loiero M, Ravagnan G, Gratton E., Biophys. J. 66(3 Pt 1), 1994
PMID: 8011908
X-ray diffraction study of cholesterol-phosphatidylserine mixtures.
Wachtel EJ, Bach D., Biochim. Biophys. Acta 922(2), 1987
PMID: 3676345
Hydration of phospholipid bilayers in the presence and absence of cholesterol.
Bach D, Miller IR., Biochim. Biophys. Acta 1368(2), 1998
PMID: 9459599
Electrical properties of tissue and cell suspensions.
SCHWAN HP., Adv Biol Med Phys 5(), 1957
PMID: 13520431
Relaxation methods
Eigen, 1963

Cevc, 1993
Undulations, steric interaction and cohesion of fluid membranes
Helfrich, Nuovo Cim. 3D(), 1984

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 15923075
PubMed | Europe PMC

Suchen in

Google Scholar