Improved photobiological H-2 production in engineered green algal cells

Kruse O, Rupprecht J, Bader K-P, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005)
JOURNAL OF BIOLOGICAL CHEMISTRY 280(40): 34170-34177.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kruse, OlafUniBi ; Rupprecht, J; Bader, Klaus-PeterUniBi; Thomas-Hall, S; Schenk, PM; Finazzi, G; Hankamer, B
Abstract / Bemerkung
Oxygenic photosynthetic organisms use solar energy to split water (H2O) into protons (H+), electrons (e(-)), and oxygen. A select group of photosynthetic microorganisms, including the green alga Chlamydomonas reinhardtii, has evolved the additional ability to redirect the derived H+ and e(-) to drive hydrogen (H-2) production via the chloroplast hydrogenases HydA1 and A2 (H(2)ase). This process occurs under anaerobic conditions and provides a biological basis for solar-driven H-2 production. However, its relatively poor yield is a major limitation for the economic viability of this process. To improve H-2 production in Chlamydomonas, we have developed a new approach to increase H+ and e(-) supply to the hydrogenases. In a first step, mutants blocked in the state 1 transition were selected. These mutants are inhibited in cyclic e(-) transfer around photosystem I, eliminating possible competition for e(-) with H(2)ase. Selected strains were further screened for increased H-2 production rates, leading to the isolation of Stm6. This strain has a modified respiratory metabolism, providing it with two additional important properties as follows: large starch reserves ( i.e. enhanced substrate availability), and a low dissolved O-2 concentration (40% of the wild type (WT)), resulting in reduced inhibition of H2ase activation. The H-2 production rates of Stm6 were 5 - 13 times that of the control WT strain over a range of conditions ( light intensity, culture time, +/- uncoupler). Typically, similar to 540 ml of H-2 liter(-1) culture ( up to 98% pure) were produced over a 10-14-day period at a maximal rate of 4 ml h(-1) ( efficiency = similar to 5 times the WT). Stm6 therefore represents an important step toward the development of future solar-powered H-2 production systems.
Erscheinungsjahr
2005
Zeitschriftentitel
JOURNAL OF BIOLOGICAL CHEMISTRY
Band
280
Ausgabe
40
Seite(n)
34170-34177
ISSN
0021-9258
eISSN
1083-351X
Page URI
https://pub.uni-bielefeld.de/record/1602202

Zitieren

Kruse O, Rupprecht J, Bader K-P, et al. Improved photobiological H-2 production in engineered green algal cells. JOURNAL OF BIOLOGICAL CHEMISTRY. 2005;280(40):34170-34177.
Kruse, O., Rupprecht, J., Bader, K. - P., Thomas-Hall, S., Schenk, P. M., Finazzi, G., & Hankamer, B. (2005). Improved photobiological H-2 production in engineered green algal cells. JOURNAL OF BIOLOGICAL CHEMISTRY, 280(40), 34170-34177. https://doi.org/10.1074/jbc.M503840200
Kruse, Olaf, Rupprecht, J, Bader, Klaus-Peter, Thomas-Hall, S, Schenk, PM, Finazzi, G, and Hankamer, B. 2005. “Improved photobiological H-2 production in engineered green algal cells”. JOURNAL OF BIOLOGICAL CHEMISTRY 280 (40): 34170-34177.
Kruse, O., Rupprecht, J., Bader, K. - P., Thomas-Hall, S., Schenk, P. M., Finazzi, G., and Hankamer, B. (2005). Improved photobiological H-2 production in engineered green algal cells. JOURNAL OF BIOLOGICAL CHEMISTRY 280, 34170-34177.
Kruse, O., et al., 2005. Improved photobiological H-2 production in engineered green algal cells. JOURNAL OF BIOLOGICAL CHEMISTRY, 280(40), p 34170-34177.
O. Kruse, et al., “Improved photobiological H-2 production in engineered green algal cells”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 280, 2005, pp. 34170-34177.
Kruse, O., Rupprecht, J., Bader, K.-P., Thomas-Hall, S., Schenk, P.M., Finazzi, G., Hankamer, B.: Improved photobiological H-2 production in engineered green algal cells. JOURNAL OF BIOLOGICAL CHEMISTRY. 280, 34170-34177 (2005).
Kruse, Olaf, Rupprecht, J, Bader, Klaus-Peter, Thomas-Hall, S, Schenk, PM, Finazzi, G, and Hankamer, B. “Improved photobiological H-2 production in engineered green algal cells”. JOURNAL OF BIOLOGICAL CHEMISTRY 280.40 (2005): 34170-34177.

94 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production.
Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R, Baweja M, Shukla P., Biotechnol Biofuels 11(), 2018
PMID: 29988523
Impaired Mitochondrial Transcription Termination Disrupts the Stromal Redox Poise in Chlamydomonas.
Uhmeyer A, Cecchin M, Ballottari M, Wobbe L., Plant Physiol 174(3), 2017
PMID: 28500267
Proteomic approaches in microalgae: perspectives and applications.
Anand V, Singh PK, Banerjee C, Shukla P., 3 Biotech 7(3), 2017
PMID: 28667637
Synthetic biology approaches for the production of plant metabolites in unicellular organisms.
Moses T, Mehrshahi P, Smith AG, Goossens A., J Exp Bot 68(15), 2017
PMID: 28449101
Inactivation of nitrate reductase alters metabolic branching of carbohydrate fermentation in the cyanobacterium Synechococcus sp. strain PCC 7002.
Qian X, Kumaraswamy GK, Zhang S, Gates C, Ananyev GM, Bryant DA, Dismukes GC., Biotechnol Bioeng 113(5), 2016
PMID: 26479976
Identification of the Elusive Pyruvate Reductase of Chlamydomonas reinhardtii Chloroplasts.
Burgess SJ, Taha H, Yeoman JA, Iamshanova O, Chan KX, Boehm M, Behrends V, Bundy JG, Bialek W, Murray JW, Nixon PJ., Plant Cell Physiol 57(1), 2016
PMID: 26574578
Challenges and opportunities for hydrogen production from microalgae.
Oey M, Sawyer AL, Ross IL, Hankamer B., Plant Biotechnol J 14(7), 2016
PMID: 26801871
The dual effect of a ferredoxin-hydrogenase fusion protein in vivo: successful divergence of the photosynthetic electron flux towards hydrogen production and elevated oxygen tolerance.
Eilenberg H, Weiner I, Ben-Zvi O, Pundak C, Marmari A, Liran O, Wecker MS, Milrad Y, Yacoby I., Biotechnol Biofuels 9(1), 2016
PMID: 27582874
Loss of algal Proton Gradient Regulation 5 increases reactive oxygen species scavenging and H2 evolution.
Chen M, Zhang J, Zhao L, Xing J, Peng L, Kuang T, Rochaix JD, Huang F., J Integr Plant Biol 58(12), 2016
PMID: 27762070
Engineering photosynthetic organisms for the production of biohydrogen.
Dubini A, Ghirardi ML., Photosynth Res 123(3), 2015
PMID: 24671643
Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii.
Torzillo G, Scoma A, Faraloni C, Giannelli L., Crit Rev Biotechnol 35(4), 2015
PMID: 24754449
Sulphur responsiveness of the Chlamydomonas reinhardtii LHCBM9 promoter.
Sawyer AL, Hankamer BD, Ross IL., Planta 241(5), 2015
PMID: 25672503
Algae after dark: mechanisms to cope with anoxic/hypoxic conditions.
Yang W, Catalanotti C, Wittkopp TM, Posewitz MC, Grossman AR., Plant J 82(3), 2015
PMID: 25752440
Relevance of nutrient media composition for hydrogen production in Chlamydomonas.
Gonzalez-Ballester D, Jurado-Oller JL, Fernandez E., Photosynth Res 125(3), 2015
PMID: 25952745
Analysis of green algal growth via dynamic model simulation and process optimization.
Zhang D, Chanona EA, Vassiliadis VS, Tamburic B., Biotechnol Bioeng 112(10), 2015
PMID: 25855209
Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production.
Antal TK, Krendeleva TE, Tyystjärvi E., Photosynth Res 125(3), 2015
PMID: 25986411
Rationales and approaches for studying metabolism in eukaryotic microalgae.
Veyel D, Erban A, Fehrle I, Kopka J, Schroda M., Metabolites 4(2), 2014
PMID: 24957022
Antimycin A effect on the electron transport in chloroplasts of two Chlamydomonas reinhardtii strains.
Antal TK, Kukarskikh GP, Bulychev AA, Tyystjärvi E, Krendeleva T., Planta 237(5), 2013
PMID: 23354456
New insights into Chlamydomonas reinhardtii hydrogen production processes by combined microarray/RNA-seq transcriptomics.
Toepel J, Illmer-Kephalides M, Jaenicke S, Straube J, May P, Goesmann A, Kruse O., Plant Biotechnol J 11(6), 2013
PMID: 23551401
Increased photosystem II stability promotes H2 production in sulfur-deprived Chlamydomonas reinhardtii.
Volgusheva A, Styring S, Mamedov F., Proc Natl Acad Sci U S A 110(18), 2013
PMID: 23589846
RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii.
Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, Kügler J, Ringsmuth AK, Kruse O, Hankamer B., PLoS One 8(4), 2013
PMID: 23613840
Design and development of synthetic microbial platform cells for bioenergy.
Lee SJ, Lee SJ, Lee DW., Front Microbiol 4(), 2013
PMID: 23626588
Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production.
Pinto TS, Malcata FX, Arrabaça JD, Silva JM, Spreitzer RJ, Esquível MG., Appl Microbiol Biotechnol 97(12), 2013
PMID: 23649352
Advances in microalgae engineering and synthetic biology applications for biofuel production.
Gimpel JA, Specht EA, Georgianna DR, Mayfield SP., Curr Opin Chem Biol 17(3), 2013
PMID: 23684717
Genetic engineering of multispecies microbial cell factories as an alternative for bioenergy production.
Ortiz-Marquez JC, Do Nascimento M, Zehr JP, Curatti L., Trends Biotechnol 31(9), 2013
PMID: 23791304
Trends in biohydrogen production: major challenges and state-of-the-art developments.
Gupta SK, Kumari S, Reddy K, Bux F., Environ Technol 34(13-16), 2013
PMID: 24350426
Improving the feasibility of producing biofuels from microalgae using wastewater.
Rawat I, Bhola V, Kumar RR, Bux F., Environ Technol 34(13-16), 2013
PMID: 24350433
Maximizing reductant flow into microbial H2 production.
Kontur WS, Noguera DR, Donohue TJ., Curr Opin Biotechnol 23(3), 2012
PMID: 22036711
Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels.
Work VH, D'Adamo S, Radakovits R, Jinkerson RE, Posewitz MC., Curr Opin Biotechnol 23(3), 2012
PMID: 22172528
Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii.
Blifernez-Klassen O, Klassen V, Doebbe A, Kersting K, Grimm P, Wobbe L, Kruse O., Nat Commun 3(), 2012
PMID: 23169055
Strategies for improving biological hydrogen production.
Hallenbeck PC, Abo-Hashesh M, Ghosh D., Bioresour Technol 110(), 2012
PMID: 22342581
Application of synthetic biology in cyanobacteria and algae.
Wang B, Wang J, Zhang W, Meldrum DR., Front Microbiol 3(), 2012
PMID: 23049529
High yields of hydrogen production induced by meta-substituted dichlorophenols biodegradation from the green alga Scenedesmus obliquus.
Papazi A, Andronis E, Ioannidis NE, Chaniotakis N, Kotzabasis K., PLoS One 7(11), 2012
PMID: 23145057
Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production.
Antal TK, Krendeleva TE, Rubin AB., Appl Microbiol Biotechnol 89(1), 2011
PMID: 20878321
On understanding proton transfer to the biocatalytic [Fe-Fe](H) sub-cluster in [Fe-Fe]H(2)ases: QM/MM MD simulations.
Hong G, Cornish AJ, Hegg EL, Pachter R., Biochim Biophys Acta 1807(5), 2011
PMID: 21296047
Rewiring hydrogenase-dependent redox circuits in cyanobacteria.
Ducat DC, Sachdeva G, Silver PA., Proc Natl Acad Sci U S A 108(10), 2011
PMID: 21368150
Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga Chlamydomonas reinhardtii.
Grossman AR, Catalanotti C, Yang W, Dubini A, Magneschi L, Subramanian V, Posewitz MC, Seibert M., New Phytol 190(2), 2011
PMID: 21563367
Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors.
Bonente G, Formighieri C, Mantelli M, Catalanotti C, Giuliano G, Morosinotto T, Bassi R., Photosynth Res 108(2-3), 2011
PMID: 21547493
Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro.
Yacoby I, Pochekailov S, Toporik H, Ghirardi ML, King PW, Zhang S., Proc Natl Acad Sci U S A 108(23), 2011
PMID: 21606330
Evolutionary significance of an algal gene encoding an [FeFe]-hydrogenase with F-domain homology and hydrogenase activity in Chlorella variabilis NC64A.
Meuser JE, Boyd ES, Ananyev G, Karns D, Radakovits R, Narayana Murthy UM, Ghirardi ML, Dismukes GC, Peters JW, Posewitz MC., Planta 234(4), 2011
PMID: 21643991
Genome-wide functional annotation and structural verification of metabolic ORFeome of Chlamydomonas reinhardtii.
Ghamsari L, Balaji S, Shen Y, Yang X, Balcha D, Fan C, Hao T, Yu H, Papin JA, Salehi-Ashtiani K., BMC Genomics 12 Suppl 1(), 2011
PMID: 21810206
Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii.
Tolleter D, Ghysels B, Alric J, Petroutsos D, Tolstygina I, Krawietz D, Happe T, Auroy P, Adriano JM, Beyly A, Cuiné S, Plet J, Reiter IM, Genty B, Cournac L, Hippler M, Peltier G., Plant Cell 23(7), 2011
PMID: 21764992
AlgaGEM--a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome.
Dal'Molin CG, Quek LE, Palfreyman RW, Nielsen LK., BMC Genomics 12 Suppl 4(), 2011
PMID: 22369158
Time-course global expression profiles of Chlamydomonas reinhardtii during photo-biological H₂ production.
Nguyen AV, Toepel J, Burgess S, Uhmeyer A, Blifernez O, Doebbe A, Hankamer B, Nixon P, Wobbe L, Kruse O., PLoS One 6(12), 2011
PMID: 22242116
Genetic engineering of algae for enhanced biofuel production.
Radakovits R, Jinkerson RE, Darzins A, Posewitz MC., Eukaryot Cell 9(4), 2010
PMID: 20139239
Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics.
Terashima M, Specht M, Naumann B, Hippler M., Mol Cell Proteomics 9(7), 2010
PMID: 20190198
Microalgal hydrogen production.
Kruse O, Hankamer B., Curr Opin Biotechnol 21(3), 2010
PMID: 20399635
Developments and perspectives of photobioreactors for biofuel production.
Morweiser M, Kruse O, Hankamer B, Posten C., Appl Microbiol Biotechnol 87(4), 2010
PMID: 20535467
The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii.
Doebbe A, Keck M, La Russa M, Mussgnug JH, Hankamer B, Tekçe E, Niehaus K, Kruse O., J Biol Chem 285(39), 2010
PMID: 20581114
Hydrogen production by Chlamydomonas reinhardtii revisited: Rubisco as a biotechnological target
Marín-Navarro J, Esquivel MG, Moreno J., World J Microbiol Biotechnol 26(10), 2010
PMID: IND44426409
Photobiological hydrogen-producing systems.
Ghirardi ML, Dubini A, Yu J, Maness PC., Chem Soc Rev 38(1), 2009
PMID: 19088964
Generation of Chlamydomonas strains that efficiently express nuclear transgenes.
Neupert J, Karcher D, Bock R., Plant J 57(6), 2009
PMID: 19036032
Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems.
Allakhverdiev SI, Kreslavski VD, Thavasi V, Zharmukhamedov SK, Klimov VV, Nagata T, Nishihara H, Ramakrishna S., Photochem Photobiol Sci 8(2), 2009
PMID: 19247505
Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity.
Dubini A, Mus F, Seibert M, Grossman AR, Posewitz MC., J Biol Chem 284(11), 2009
PMID: 19117946
Phylogenetic and molecular analysis of hydrogen-producing green algae.
Timmins M, Thomas-Hall SR, Darling A, Zhang E, Hankamer B, Marx UC, Schenk PM., J Exp Bot 60(6), 2009
PMID: 19342428
The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion.
Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM., J Biol Chem 284(35), 2009
PMID: 19478077
Engineering algae for biohydrogen and biofuel production.
Beer LL, Boyd ES, Peters JW, Posewitz MC., Curr Opin Biotechnol 20(3), 2009
PMID: 19560336
Analytical approaches to photobiological hydrogen production in unicellular green algae.
Hemschemeier A, Melis A, Happe T., Photosynth Res 102(2-3), 2009
PMID: 19291418
Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks.
Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T., Planta 227(2), 2008
PMID: 17885762
The technology of microalgal culturing.
Eriksen NT., Biotechnol Lett 30(9), 2008
PMID: 18478186
Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803.
Zhang Z, Pendse ND, Phillips KN, Cotner JB, Khodursky A., BMC Genomics 9(), 2008
PMID: 18644144
Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii.
Nguyen AV, Thomas-Hall SR, Malnoë A, Timmins M, Mussgnug JH, Rupprecht J, Kruse O, Hankamer B, Schenk PM., Eukaryot Cell 7(11), 2008
PMID: 18708561
Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries.
Nagy LE, Meuser JE, Plummer S, Seibert M, Ghirardi ML, King PW, Ahmann D, Posewitz MC., Biotechnol Lett 29(3), 2007
PMID: 17195059
A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions.
Kosourov S, Patrusheva E, Ghirardi ML, Seibert M, Tsygankov A., J Biotechnol 128(4), 2007
PMID: 17275940
Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H(2) production.
Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A, Hankamer B, Kruse O., J Biotechnol 131(1), 2007
PMID: 17624461
Phylogenetic and molecular analysis of the ribulose-1,5-bisphosphate carboxylase small subunit gene family in banana.
Thomas-Hall S, Campbell PR, Carlens K, Kawanishi E, Swennen R, Sági L, Schenk PM., J Exp Bot 58(10), 2007
PMID: 17584952
Photosynthetic biomass and H₂ production by green algae: from bioengineering to bioreactor scale-up
Hankamer B, Lehr F, Rupprecht J, Mussgnug JH, Posten C, Kruse O., Physiol Plant 131(1), 2007
PMID: IND43937744
Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up.
Hankamer B, Lehr F, Rupprecht J, Mussgnug JH, Posten C, Kruse O., Physiol Plant 131(1), 2007
PMID: 18251920
Simultaneous control of turbidity and dilution rate through adjustment of medium composition in semi-continuous Chlamydomonas cultures.
Maeda I, Seto Y, Ueda S, Cheng Y, Hari J, Kawase M, Miyasaka H, Yagi K., Biotechnol Bioeng 94(4), 2006
PMID: 16470602
Perspectives and advances of biological H2 production in microorganisms.
Rupprecht J, Hankamer B, Mussgnug JH, Ananyev G, Dismukes C, Kruse O., Appl Microbiol Biotechnol 72(3), 2006
PMID: 16896600
Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies.
Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B., Photochem Photobiol Sci 4(12), 2005
PMID: 16307108

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16100118
PubMed | Europe PMC

Suchen in

Google Scholar