Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches tolerance of Medicago truncatula

Colditz F, Braun HP, Jacquet C, Niehaus K, Krajinski F (2005)
Plant Molecular Biology 59(3): 387-406.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Colditz, F.; Braun, H. P.; Jacquet, C.; Niehaus, KarstenUniBi; Krajinski, F.
Abstract / Bemerkung
To investigate the molecular mechanisms underlying susceptibility of legumes to the root pathogen Aphanomyces euteiches (oomycota), comparative proteomic studies have been carried out. In a first approach, we have analysed two Medicago truncatula lines of the French CORE collection (F83.005-5 (R2002) and F83.005-9 (R2002)), which showed either increased or decreased susceptibility to A. euteiches as compared to the widely adopted line A17. Several proteins were identified to be differentially induced after pathogen challenge in the two M. truncatula accessions with altered disease susceptibility, whereof proteins with increased abundances in the more resistant line F83.005-9 could be involved in mechanisms that lead to an improved disease resistance. Among these proteins, we identified two proteasome alpha subunits, which might be involved in defense response. To broaden our studies on A. euteiches-tolerance of M. truncatula, we investigated two other phenomena that lead to an either increased A. euteiches-resistance or to an enhanced susceptibility. The topic of an enhanced plant resistance to A. euteiches was studied in plants showing a bioprotective effect of a pre-established arbuscular mycorrhiza (AM) symbiosis. Evaluation of root fresh weights and pathogen spreading in the root system clearly indicate that mycorrhizal plants show increased A. euteiches-resistance as compared to non-mycorrhizal plants. Proteome analyses revealed the induction of similar protein patterns as in the M. truncatula accessions with comparatively high resistance level to A. euteiches. In a third approach, increased A. euteiches susceptibility was effected by exogenous abscisic acid (ABA) application prior to root infection. Evaluation of the abundance levels of a group of pathogenesis related class 10 (PR10)-like proteins, which were previously identified to be regulated after A. euteiches infection, revealed a correlation between the abundance levels of these proteins and the A. euteiches infection level or severity.
Stichworte
Aphanomyces euteiches; ABA; proteasome; PR10; proteomics; Medicago truncatula
Erscheinungsjahr
2005
Zeitschriftentitel
Plant Molecular Biology
Band
59
Ausgabe
3
Seite(n)
387-406
ISSN
0167-4412
eISSN
1573-5028
Page URI
https://pub.uni-bielefeld.de/record/1601792

Zitieren

Colditz F, Braun HP, Jacquet C, Niehaus K, Krajinski F. Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches tolerance of Medicago truncatula. Plant Molecular Biology. 2005;59(3):387-406.
Colditz, F., Braun, H. P., Jacquet, C., Niehaus, K., & Krajinski, F. (2005). Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches tolerance of Medicago truncatula. Plant Molecular Biology, 59(3), 387-406. https://doi.org/10.1007/s11103-005-0184-z
Colditz, F., Braun, H. P., Jacquet, C., Niehaus, Karsten, and Krajinski, F. 2005. “Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches tolerance of Medicago truncatula”. Plant Molecular Biology 59 (3): 387-406.
Colditz, F., Braun, H. P., Jacquet, C., Niehaus, K., and Krajinski, F. (2005). Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches tolerance of Medicago truncatula. Plant Molecular Biology 59, 387-406.
Colditz, F., et al., 2005. Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches tolerance of Medicago truncatula. Plant Molecular Biology, 59(3), p 387-406.
F. Colditz, et al., “Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches tolerance of Medicago truncatula”, Plant Molecular Biology, vol. 59, 2005, pp. 387-406.
Colditz, F., Braun, H.P., Jacquet, C., Niehaus, K., Krajinski, F.: Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches tolerance of Medicago truncatula. Plant Molecular Biology. 59, 387-406 (2005).
Colditz, F., Braun, H. P., Jacquet, C., Niehaus, Karsten, and Krajinski, F. “Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches tolerance of Medicago truncatula”. Plant Molecular Biology 59.3 (2005): 387-406.

34 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Proteomics analysis of Medicago truncatula response to infection by the phytopathogenic bacterium Ralstonia solanacearum points to jasmonate and salicylate defence pathways.
Yamchi A, Ben C, Rossignol M, Zareie SR, Mirlohi A, Sayed-Tabatabaei BE, Pichereaux C, Sarrafi A, Rickauer M, Gentzbittel L., Cell Microbiol 20(4), 2018
PMID: 29084417
Molecular and cellular control of cell death and defense signaling in pepper.
Choi HW, Choi HW, Hwang BK., Planta 241(1), 2015
PMID: 25252816
Proteomic investigation of response to FORL infection in tomato roots.
Mazzeo MF, Cacace G, Ferriello F, Puopolo G, Zoina A, Ercolano MR, Siciliano RA., Plant Physiol Biochem 74(), 2014
PMID: 24262994
NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens.
Rey T, Nars A, Bonhomme M, Bottin A, Huguet S, Balzergue S, Jardinaud MF, Bono JJ, Cullimore J, Dumas B, Gough C, Jacquet C., New Phytol 198(3), 2013
PMID: 23432463
Phoma medicaginis stimulates the induction of the octadecanoid and phenylpropanoid pathways in Medicago truncatula.
Kamphuis LG, Williams AH, Küster H, Trengove RD, Singh KB, Oliver RP, Ellwood SR., Mol Plant Pathol 13(6), 2012
PMID: 22212347
Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection.
Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F., Plant Physiol 159(1), 2012
PMID: 22399646
Expression of coordinately regulated defence response genes and analysis of their role in disease resistance in Medicago truncatula.
Samac DA, Peñuela S, Schnurr JA, Hunt EN, Foster-Hartnett D, Vandenbosch KA, Gantt JS., Mol Plant Pathol 12(8), 2011
PMID: 21726379
Hydrogen peroxide scavenging mechanisms are components of Medicago truncatula partial resistance to Aphanomyces euteiches
Djébali N, Mhadhbi H, Lafitte C, Dumas B, Esquerré-Tugayé MT, Aouani ME, Jacquet C., Eur J Plant Pathol 131(4), 2011
PMID: IND44685738
Proteomic studies of phytopathogenic fungi, oomycetes and their interactions with hosts
Bhadauria V, Banniza S, Wang LX, Wei YD, Peng YL., Eur J Plant Pathol 126(1), 2010
PMID: IND44296653
Model legumes contribute to faba bean breeding
Rispail Nicolas, Kaló Péter, Kiss GyörgyB, Ellis THNoel, Gallardo Karine, Thompson RichardD, Prats Elena, Larrainzar Estibaliz, Ladrera Ruben, González EstherM, Arrese-Igor Cesar, Ferguson BrettJ, Gresshoff PeterM, Rubiales Diego., Field Crops Res 115(3), 2010
PMID: IND44316555
Faba bean breeding for disease resistance
Sillero JosefinaC, Villegas-Fernández AngelM, Thomas Jane, Rojas-Molina MariaM, Emeran AmeroA, Fernández-Aparicio Mónica, Rubiales Diego., Field Crops Res 115(3), 2010
PMID: IND44316559
A study on the susceptibility of the model legume plant Medicago truncatula to the soil-borne pathogen Fusarium oxysporum
Ramírez-Suero M, Khanshour A, Martinez Y, Rickauer M., Eur J Plant Pathol 126(4), 2010
PMID: IND44336452
Proteomics of plant pathogenic fungi.
González-Fernández R, Prats E, Jorrín-Novo JV., J Biomed Biotechnol 2010(), 2010
PMID: 20589070
Proteomic analysis of Medicago truncatula root plastids.
Daher Z, Recorbet G, Valot B, Robert F, Balliau T, Potin S, Schoefs B, Dumas-Gaudot E., Proteomics 10(11), 2010
PMID: 20336678
Comparative proteomic studies of root-microbe interactions.
Mathesius U., J Proteomics 72(3), 2009
PMID: 19152841
Pathogenesis and stress related, as well as metabolic proteins are regulated in tomato stems infected with Ralstonia solanacearum.
Dahal D, Heintz D, Van Dorsselaer A, Braun HP, Wydra K., Plant Physiol Biochem 47(9), 2009
PMID: 19482482
Differential expression proteomics to investigate responses and resistance to Orobanche crenata in Medicago truncatula.
Castillejo MA, Maldonado AM, Dumas-Gaudot E, Fernández-Aparicio M, Susín R, Diego R, Jorrín JV., BMC Genomics 10(), 2009
PMID: 19575787
Recent Advances in Medicago truncatula Genomics.
Ané JM, Zhu H, Frugoli J., Int J Plant Genomics 2008(), 2008
PMID: 18288239
Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress.
Larrainzar E, Wienkoop S, Weckwerth W, Ladrera R, Arrese-Igor C, González EM., Plant Physiol 144(3), 2007
PMID: 17545507
Root rot disease of legumes caused by Aphanomyces euteiches.
Gaulin E, Jacquet C, Bottin A, Dumas B., Mol Plant Pathol 8(5), 2007
PMID: 20507520
Recycling or regulation? The role of amino-terminal modifying enzymes.
Walling LL., Curr Opin Plant Biol 9(3), 2006
PMID: 16597508
Endophyte or parasite--what decides?
Kogel KH, Franken P, Hückelhoven R., Curr Opin Plant Biol 9(4), 2006
PMID: 16713330

51 References

Daten bereitgestellt von Europe PubMed Central.

Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn. by two-dimensional electrophoresis and mass spectrometry.
Bestel-Corre G, Dumas-Gaudot E, Poinsot V, Dieu M, Dierick JF, van TD, Remacle J, Gianinazzi-Pearson V, Gianinazzi S., Electrophoresis 23(1), 2002
PMID: 11824612

Bødker, Mycorrhiza 8(), 1998
Plant proteome analysis.
Canovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock HP, Rossignol M., Proteomics 4(2), 2004
PMID: 14760698
Proteomic approach: identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches.
Colditz F, Nyamsuren O, Niehaus K, Eubel H, Braun HP, Krajinski F., Plant Mol. Biol. 55(1), 2004
PMID: 15604668
Medicago truncatula--a model in the making!
Cook DR., Curr. Opin. Plant Biol. 2(4), 1999
PMID: 10459004
Cryptogein affects expression of alpha3, alpha6 and beta1 20S proteasome subunits encoding genes in tobacco.
Dahan J, Etienne P, Petitot AS, Houot V, Blein JP, Suty L., J. Exp. Bot. 52(362), 2001
PMID: 11520884

Dixon, 1992

Djordjevic, Mol. Plant–Microbe Interact. 16(), 2003
Correlation between protein and mRNA abundance in yeast.
Gygi SP, Rochon Y, Franza BR, Aebersold R., Mol. Cell. Biol. 19(3), 1999
PMID: 10022859

Hagedorn, 1989

Harrison, Mol. Plant–Microbe Interact. 6(), 1993
Integrated plant proteomics — putting the green genomes to work
Heazlewood JL, Millar AH., Funct. Plant Biol. 30(5), 2003
PMID: IND44640409

Hoagland, Calif. Agric. Exp. Stud. Circ. 347(), 1950
Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts.
Imin N, De Jong F, Mathesius U, van Noorden G, Saeed NA, Wang XD, Rose RJ, Rolfe BG., Proteomics 4(7), 2004
PMID: 15221745
Insight on segregation distortions in two intraspecific crosses between annual species of Medicago (Leguminosae).
Jenczewski E, Gherardi M, Bonnin I, Prosperi JM, Olivieri I, Huguet T., Theor. Appl. Genet. 94(5), 1997
PMID: IND20604210
Activation of the programmed cell death pathway by inhibition of proteasome function in plants.
Kim M, Ahn JW, Jin UH, Choi D, Paek KH, Pai HS., J. Biol. Chem. 278(21), 2003
PMID: 12637532

Kjøller, Mycorrhiza 6(), 1996

Levenfors, Eur. J. Plant Pathol. 109(), 2003
Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase.
Li J, Kinoshita T, Pandey S, Ng CK, Gygi SP, Shimazaki K, Assmann SM., Nature 418(6899), 2002
PMID: 12181571

Lo, Mol. Plant–Microbe Interact. 12(), 1999
Characterization of a gene family encoding abscisic acid- and environmental stress-inducible proteins of alfalfa.
Luo M, Liu JH, Mohapatra S, Hill RD, Mohapatra SS., J. Biol. Chem. 267(22), 1992
PMID: 1379227

McGee, Mol. Plant–Microbe Interact. 14(), 2001
Transcriptional profiling of Medicago truncatula roots after infection wtih Aphanomyces euteiches (oomycota) identifies novel genes upregulated during this pathogenic interaction.
Nyamsuren O, Colditz F, Rosendahl S, Tamasloukht MB, Bekel T, Meyer F, Kuester H, Franken P, Krajinski F., Physiol. Mol. Plant Pathol. 63(1), 2003
PMID: IND43743021
Soft rot susceptibility of potatoes with high reducing sugar content.
Otazu V, Secor GA., Phytopathology 71(3), 1981
PMID: IND81033865
Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway.
Park CJ, Kim KJ, Shin R, Park JM, Shin YC, Paek KH., Plant J. 37(2), 2004
PMID: 14690503

Peart, PNAS 99(), 2002

AUTHOR UNKNOWN, 0

Prospéri, Grain Legumes 28(), 2000

Prospéri, 2001
Endoproteolytic activities in pea roots inoculated with arbuscular mycorrhizal fungus Glomus mosseae and/or Aphanomyces euteiches in relation to bioprotection.
Slezack S, Dumas-Gaudot E, Rosendahl S, Kjoller R, Paynot M, Negrel J, Gianinazzi S., New Phytol. 142(3), 1999
PMID: IND22029973
Preferential induction of 20S proteasome subunits during elicitation of plant defense reactions: towards the characterization of "plant defense proteasomes".
Suty L, Lequeu J, Lancon A, Etienne P, Petitot AS, Blein JP., Int. J. Biochem. Cell Biol. 35(5), 2003
PMID: 12672456

Torregrosa, Mol. Plant–Microbe Interact. 17(), 2004

AUTHOR UNKNOWN, 0

VandenBosch, Plant Physiol. 131(), 2003

Vandemark, Arch. Phytol. Plant Prot. 37(), 2004
Mapping the proteome of barrel medic (Medicago truncatula).
Watson BS, Asirvatham VS, Wang L, Sumner LW., Plant Physiol. 131(3), 2003
PMID: 12644662

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16235107
PubMed | Europe PMC

Suchen in

Google Scholar