Probability densities of periodically driven noisy systems: An approximation scheme incorporating linear-response and adiabatic theory

Evstigneev M, Reimann P (2005)
PHYSICAL REVIEW E 72(4): 45101.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We consider periodically driven noisy systems in the limit of long times. To deduce their asymptotic time-periodic probability distributions, two approaches are commonly used: adiabatic theory, valid if driving is very slow, and linear-response theory, applicable when driving is weak. We introduce an approximation scheme that combines these two approaches to yield the driven probability distribution even when driving is strong and moderately fast, so that both linear-response and adiabatic approximations break down. The high accuracy of this scheme is demonstrated on a driven overdamped noisy oscillator in a bistable quartic potential.
Erscheinungsjahr
2005
Zeitschriftentitel
PHYSICAL REVIEW E
Band
72
Ausgabe
4
Art.-Nr.
45101
ISSN
1539-3755
eISSN
1550-2376
Page URI
https://pub.uni-bielefeld.de/record/1601618

Zitieren

Evstigneev M, Reimann P. Probability densities of periodically driven noisy systems: An approximation scheme incorporating linear-response and adiabatic theory. PHYSICAL REVIEW E. 2005;72(4): 45101.
Evstigneev, M., & Reimann, P. (2005). Probability densities of periodically driven noisy systems: An approximation scheme incorporating linear-response and adiabatic theory. PHYSICAL REVIEW E, 72(4), 45101. https://doi.org/10.1103/PhysRevE.72.045101
Evstigneev, Mykhaylo, and Reimann, Peter. 2005. “Probability densities of periodically driven noisy systems: An approximation scheme incorporating linear-response and adiabatic theory”. PHYSICAL REVIEW E 72 (4): 45101.
Evstigneev, M., and Reimann, P. (2005). Probability densities of periodically driven noisy systems: An approximation scheme incorporating linear-response and adiabatic theory. PHYSICAL REVIEW E 72:45101.
Evstigneev, M., & Reimann, P., 2005. Probability densities of periodically driven noisy systems: An approximation scheme incorporating linear-response and adiabatic theory. PHYSICAL REVIEW E, 72(4): 45101.
M. Evstigneev and P. Reimann, “Probability densities of periodically driven noisy systems: An approximation scheme incorporating linear-response and adiabatic theory”, PHYSICAL REVIEW E, vol. 72, 2005, : 45101.
Evstigneev, M., Reimann, P.: Probability densities of periodically driven noisy systems: An approximation scheme incorporating linear-response and adiabatic theory. PHYSICAL REVIEW E. 72, : 45101 (2005).
Evstigneev, Mykhaylo, and Reimann, Peter. “Probability densities of periodically driven noisy systems: An approximation scheme incorporating linear-response and adiabatic theory”. PHYSICAL REVIEW E 72.4 (2005): 45101.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

33 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, physica a 156(), 1988

AUTHOR UNKNOWN, j biol chem 259(), 1983

AUTHOR UNKNOWN, 1949

AUTHOR UNKNOWN, tellus 34(), 1982

AUTHOR UNKNOWN, tellus 34(), 1982

AUTHOR UNKNOWN, acta phys pol b 35(), 2004

AUTHOR UNKNOWN, 2000

AUTHOR UNKNOWN, 1982
Brownian motors: noisy transport far from equilibrium
Reimann, Physics Reports 361(2-4), 2002
Generalized moment expansion for Brownian relaxation processes
Nadler, The Journal of Chemical Physics 82(1), 1985

Talkner, New Journal of Physics 1(), 1999

Gnecco, Journal of Physics Condensed Matter 13(31), 2001
Stochastic resonance in a double well.
Fox RF., Phys Rev A Gen Phys 39(8), 1989
PMID: 9901742
Suppression of higher harmonics at noise induced resonances.
Jung P, Talkner P., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 51(3), 1995
PMID: 9962928
Periodically forced Fokker-Planck equation and stochastic resonance.
Hu Gang, Nicolis G, Nicolis C., Phys. Rev., A 42(4), 1990
PMID: 9904251
Stochastic resonance
Gammaitoni, Reviews of Modern Physics 70(1), 1998
Exact expression for the diffusion propagator in a family of time-dependent anharmonic potentials.
Giampaoli JA, Strier DE, Batista C, Drazer G, Wio HS., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 60(3), 1999
PMID: 11970052
Reaction-rate theory: fifty years after Kramers
Hänggi, Reviews of Modern Physics 62(2), 1990
Brownian motion exhibiting absolute negative mobility.
Eichhorn R, Reimann P, Hanggi P., Phys. Rev. Lett. 88(19), 2002
PMID: 12005621
Oscillatory systems driven by noise: frequency and phase synchronization.
Callenbach L, Hanggi P, Linz SJ, Freund JA, Schimansky-Geier L., Phys Rev E Stat Nonlin Soft Matter Phys 65(5 Pt 1), 2002
PMID: 12059532
Periodically driven stochastic systems
Jung, Physics Reports 234(4-5), 1993
Stochastic processes: Time evolution, symmetries and linear response
Hänggi, Physics Reports 88(4), 1982
Asymptotic distributions of periodically driven stochastic systems
Dutta, Physical Review E 67(6), 2003
Stochastic resonance in monostable overdamped systems
Evstigneev, EPL (Europhysics Letters) 65(1), 2004
Multiplicative stochastic resonance in linear systems: Analytical solution
Berdichevsky, EPL (Europhysics Letters) 36(3), 1996
Rocking bistable systems: Use and abuse of linear response theory
Casado-Pascual, EPL (Europhysics Letters) 58(3), 2002
Rate description of Fokker-Planck processes with time-dependent parameters.
Talkner P, Luczka J., Phys Rev E Stat Nonlin Soft Matter Phys 69(4 Pt 2), 2004
PMID: 15169071
Rate description in friction force microscopy
Evstigneev, EPL (Europhysics Letters) 67(6), 2004

CHATTAH, Modern Physics Letters B 10(22), 1996
Solutions of the Fokker-Planck equation for a double-well potential in terms of matrix continued fractions
Voigtlaender, Journal of Statistical Physics 40(3-4), 1985
Quasiadiabatic solutions of Fokker Planck equations with time-dependent drift and fluctuations coefficients
Weidlich, Zeitschrift für Physik B Condensed Matter 39(1), 1980
Thermal activation in bistable systems under external periodic forces
Jung, Zeitschrift für Physik B Condensed Matter 76(4), 1989
Dynamic Susceptibility of Classical Anharmonic Oscillator
Onodera, Progress of Theoretical Physics 44(6), 1970
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16383450
PubMed | Europe PMC

Suchen in

Google Scholar