Calculating initial-state-selected reaction probabilities from thermal flux eigenstates: A transition-state-based approach
Huarte-Larranaga F, Manthe U (2005)
JOURNAL OF CHEMICAL PHYSICS 123(20): 204114.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Huarte-Larranaga, F;
Manthe, UweUniBi
Einrichtung
Abstract / Bemerkung
An approach for the calculation of initial-state-selected reaction probabilities utilizing a transition-state view and the multiconfigurational time-dependent Hartree approach is presented. Using flux correlation functions, wave packets located in the transition-state region are constructed and propagated into the asymptotic region to obtain initial-state-selected reaction probabilities. A complete set of reaction probabilities is obtained from a single set of thermal flux eigenstates. Concepts previously applied with success to the calculation of k(T) or N(E) are transferred to the calculation of state-selected probabilities. The benchmark H+H-2 (J=0) reaction on the LSTH potential-energy surface is used to test the reliability of this approach. (c) 2005 American Institute of Physics.
Erscheinungsjahr
2005
Zeitschriftentitel
JOURNAL OF CHEMICAL PHYSICS
Band
123
Ausgabe
20
Seite(n)
204114
ISSN
0021-9606
Page URI
https://pub.uni-bielefeld.de/record/1601322
Zitieren
Huarte-Larranaga F, Manthe U. Calculating initial-state-selected reaction probabilities from thermal flux eigenstates: A transition-state-based approach. JOURNAL OF CHEMICAL PHYSICS. 2005;123(20):204114.
Huarte-Larranaga, F., & Manthe, U. (2005). Calculating initial-state-selected reaction probabilities from thermal flux eigenstates: A transition-state-based approach. JOURNAL OF CHEMICAL PHYSICS, 123(20), 204114. https://doi.org/10.1063/1.2132273
Huarte-Larranaga, F, and Manthe, Uwe. 2005. “Calculating initial-state-selected reaction probabilities from thermal flux eigenstates: A transition-state-based approach”. JOURNAL OF CHEMICAL PHYSICS 123 (20): 204114.
Huarte-Larranaga, F., and Manthe, U. (2005). Calculating initial-state-selected reaction probabilities from thermal flux eigenstates: A transition-state-based approach. JOURNAL OF CHEMICAL PHYSICS 123, 204114.
Huarte-Larranaga, F., & Manthe, U., 2005. Calculating initial-state-selected reaction probabilities from thermal flux eigenstates: A transition-state-based approach. JOURNAL OF CHEMICAL PHYSICS, 123(20), p 204114.
F. Huarte-Larranaga and U. Manthe, “Calculating initial-state-selected reaction probabilities from thermal flux eigenstates: A transition-state-based approach”, JOURNAL OF CHEMICAL PHYSICS, vol. 123, 2005, pp. 204114.
Huarte-Larranaga, F., Manthe, U.: Calculating initial-state-selected reaction probabilities from thermal flux eigenstates: A transition-state-based approach. JOURNAL OF CHEMICAL PHYSICS. 123, 204114 (2005).
Huarte-Larranaga, F, and Manthe, Uwe. “Calculating initial-state-selected reaction probabilities from thermal flux eigenstates: A transition-state-based approach”. JOURNAL OF CHEMICAL PHYSICS 123.20 (2005): 204114.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
25 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Rigorous close-coupling quantum dynamics calculation of thermal rate constants for the water formation reaction of H2 + OH on a high-level PES.
Welsch R., J Chem Phys 148(20), 2018
PMID: 29865815
Welsch R., J Chem Phys 148(20), 2018
PMID: 29865815
Full-dimensional quantum dynamics calculations for H + CHD3 → H2 + CD3: The effect of multiple vibrational excitations.
Ellerbrock R, Manthe U., J Chem Phys 148(22), 2018
PMID: 29907049
Ellerbrock R, Manthe U., J Chem Phys 148(22), 2018
PMID: 29907049
A transition-state based rotational sudden (TSRS) approximation for polyatomic reactive scattering.
Zhao B, Manthe U., J Chem Phys 147(14), 2017
PMID: 29031274
Zhao B, Manthe U., J Chem Phys 147(14), 2017
PMID: 29031274
Communication: Reactivity borrowing in the mode selective chemistry of H + CHD3 → H2 + CD3.
Ellerbrock R, Manthe U., J Chem Phys 147(24), 2017
PMID: 29289128
Ellerbrock R, Manthe U., J Chem Phys 147(24), 2017
PMID: 29289128
S-matrix decomposition, natural reaction channels, and the quantum transition state approach to reactive scattering.
Manthe U, Ellerbrock R., J Chem Phys 144(20), 2016
PMID: 27250291
Manthe U, Ellerbrock R., J Chem Phys 144(20), 2016
PMID: 27250291
Full-dimensional and reduced-dimensional calculations of initial state-selected reaction probabilities studying the H + CH4 → H2 + CH3 reaction on a neural network PES.
Welsch R, Manthe U., J Chem Phys 142(6), 2015
PMID: 25681908
Welsch R, Manthe U., J Chem Phys 142(6), 2015
PMID: 25681908
Calculation of state-to-state differential and integral cross sections for atom-diatom reactions with transition-state wave packets.
Zhao B, Sun Z, Guo H., J Chem Phys 140(23), 2014
PMID: 24952526
Zhao B, Sun Z, Guo H., J Chem Phys 140(23), 2014
PMID: 24952526
Correlation functions for fully or partially state-resolved reactive scattering calculations.
Manthe U, Welsch R., J Chem Phys 140(24), 2014
PMID: 24985624
Manthe U, Welsch R., J Chem Phys 140(24), 2014
PMID: 24985624
Communication: Ro-vibrational control of chemical reactivity in H+CH₄→ H₂+CH₃: full-dimensional quantum dynamics calculations and a sudden model.
Welsch R, Manthe U., J Chem Phys 141(5), 2014
PMID: 25106559
Welsch R, Manthe U., J Chem Phys 141(5), 2014
PMID: 25106559
Calculation of the state-to-state S-matrix for tetra-atomic reactions with transition-state wave packets: H₂/D₂ + OH → H/D + H₂O/HOD.
Zhao B, Sun Z, Guo H., J Chem Phys 141(15), 2014
PMID: 25338886
Zhao B, Sun Z, Guo H., J Chem Phys 141(15), 2014
PMID: 25338886
The role of the transition state in polyatomic reactions: initial state-selected reaction probabilities of the H + CH₄ → H₂ + CH₃ reaction.
Welsch R, Manthe U., J Chem Phys 141(17), 2014
PMID: 25381520
Welsch R, Manthe U., J Chem Phys 141(17), 2014
PMID: 25381520
Fast Shepard interpolation on graphics processing units: potential energy surfaces and dynamics for H + CH4 → H2 + CH3.
Welsch R, Manthe U., J Chem Phys 138(16), 2013
PMID: 23635122
Welsch R, Manthe U., J Chem Phys 138(16), 2013
PMID: 23635122
An extension of the grid empowered molecular simulator to quantum reactive scattering.
Rampino S, Faginas Lago N, Laganà A, Huarte-Larrañaga F., J Comput Chem 33(6), 2012
PMID: 22213017
Rampino S, Faginas Lago N, Laganà A, Huarte-Larrañaga F., J Comput Chem 33(6), 2012
PMID: 22213017
State-to-state reaction probabilities within the quantum transition state framework.
Welsch R, Huarte-Larrañaga F, Manthe U., J Chem Phys 136(6), 2012
PMID: 22360179
Welsch R, Huarte-Larrañaga F, Manthe U., J Chem Phys 136(6), 2012
PMID: 22360179
A full-dimensional wave packet dynamics study of the photodetachment spectra of FCH4(-).
Palma J, Manthe U., J Chem Phys 137(4), 2012
PMID: 22852617
Palma J, Manthe U., J Chem Phys 137(4), 2012
PMID: 22852617
Towards chemically accurate simulation of molecule-surface reactions.
Kroes GJ., Phys Chem Chem Phys 14(43), 2012
PMID: 23037951
Kroes GJ., Phys Chem Chem Phys 14(43), 2012
PMID: 23037951
Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H + CH4 → H2 + CH3 rate constants for different potentials.
Welsch R, Manthe U., J Chem Phys 137(24), 2012
PMID: 23277927
Welsch R, Manthe U., J Chem Phys 137(24), 2012
PMID: 23277927
State-to-state reactive scattering in six dimensions using reactant-product decoupling: OH + H2 → H2O + H (J = 0).
Cvitaš MT, Althorpe SC., J Chem Phys 134(2), 2011
PMID: 21241101
Cvitaš MT, Althorpe SC., J Chem Phys 134(2), 2011
PMID: 21241101
Reactive resonances in the F + CHD3 reaction--a quantum dynamics study.
von Horsten HF, Clary DC., Phys Chem Chem Phys 13(10), 2011
PMID: 21264397
von Horsten HF, Clary DC., Phys Chem Chem Phys 13(10), 2011
PMID: 21264397
Ab initio potential energy surface and quantum dynamics for the H + CH4 → H2 + CH3 reaction.
Zhou Y, Fu B, Wang C, Collins MA, Zhang DH., J Chem Phys 134(6), 2011
PMID: 21322696
Zhou Y, Fu B, Wang C, Collins MA, Zhang DH., J Chem Phys 134(6), 2011
PMID: 21322696
Effects of reagent vibrational excitation on the dynamics of the H + CHD3 → H2 + CD3 reaction: a seven-dimensional time-dependent wave packet study.
Zhou Y, Wang C, Zhang DH., J Chem Phys 135(2), 2011
PMID: 21766948
Zhou Y, Wang C, Zhang DH., J Chem Phys 135(2), 2011
PMID: 21766948
Calculation of multiple initial state selected reaction probabilities from Chebyshev flux-flux correlation functions: influence of reactant internal excitations on H + H2O → OH + H2.
Jiang B, Xie D, Guo H., J Chem Phys 135(8), 2011
PMID: 21895164
Jiang B, Xie D, Guo H., J Chem Phys 135(8), 2011
PMID: 21895164
Quantum dynamics of the H+CH4-->H2+CH3 reaction in curvilinear coordinates: full-dimensional and reduced dimensional calculations of reaction rates.
Schiffel G, Manthe U., J Chem Phys 132(8), 2010
PMID: 20192286
Schiffel G, Manthe U., J Chem Phys 132(8), 2010
PMID: 20192286
Communications: A rigorous transition state based approach to state-specific reaction dynamics: Full-dimensional calculations for H+CH(4)-->H(2)+CH(3).
Schiffel G, Manthe U., J Chem Phys 132(19), 2010
PMID: 20499944
Schiffel G, Manthe U., J Chem Phys 132(19), 2010
PMID: 20499944
A transition state view on reactive scattering: initial state-selected reaction probabilities for the H + CH4 → H2 + CH3 reaction studied in full dimensionality.
Schiffel G, Manthe U., J Chem Phys 133(17), 2010
PMID: 21054023
Schiffel G, Manthe U., J Chem Phys 133(17), 2010
PMID: 21054023
55 References
Daten bereitgestellt von Europe PubMed Central.
Quantum scattering calculations on chemical reactions.
Althorpe SC, Clary DC., Annu Rev Phys Chem 54(), 2002
PMID: 12651964
Althorpe SC, Clary DC., Annu Rev Phys Chem 54(), 2002
PMID: 12651964
Observation and interpretation of a time-delayed mechanism in the hydrogen exchange reaction.
Althorpe SC, Fernandez-Alonso F, Bean BD, Ayers JD, Pomerantz AE, Zare RN, Wrede E., Nature 416(6876), 2002
PMID: 11882892
Althorpe SC, Fernandez-Alonso F, Bean BD, Ayers JD, Pomerantz AE, Zare RN, Wrede E., Nature 416(6876), 2002
PMID: 11882892
Forward scattering due to slow-down of the intermediate in the H + HD --> D + H(2) reaction.
Harich SA, Dai D, Wang CC, Yang X, Chao SD, Skodje RT., Nature 419(6904), 2002
PMID: 12239562
Harich SA, Dai D, Wang CC, Yang X, Chao SD, Skodje RT., Nature 419(6904), 2002
PMID: 12239562
AUTHOR UNKNOWN, 0
Resonance-mediated chemical reaction: F+HD-->HF+D
Skodje RT, Skouteris D, Manolopoulos DE, Lee SH, Dong F, Liu K., Phys. Rev. Lett. 85(6), 2000
PMID: 10991513
Skodje RT, Skouteris D, Manolopoulos DE, Lee SH, Dong F, Liu K., Phys. Rev. Lett. 85(6), 2000
PMID: 10991513
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
A Quantum State-Resolved Insertion Reaction: O((1)D) + H(2)(J = 0) --> OH((2) product operator product operator product operator, v, N) + H((2)S).
Liu X, Lin JJ, Harich S, Schatz GC, Yang X., Science 289(5484), 2000
PMID: 10968786
Liu X, Lin JJ, Harich S, Schatz GC, Yang X., Science 289(5484), 2000
PMID: 10968786
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
First-principles theory for the H + H2O, D2O reactions.
Zhang DH, Collins MA, Lee SY., Science 290(5493), 2000
PMID: 11062123
Zhang DH, Collins MA, Lee SY., Science 290(5493), 2000
PMID: 11062123
Breakdown of the spectator model for the OH bonds in studying the H+H2O reaction.
Zhang DH, Yang M, Lee SY., Phys. Rev. Lett. 89(10), 2002
PMID: 12225190
Zhang DH, Yang M, Lee SY., Phys. Rev. Lett. 89(10), 2002
PMID: 12225190
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Jäckle, J Chem Phys 241(), 1999
AUTHOR UNKNOWN, 0
Degeneracy in discrete variable representations: general considerations and application to the multiconfigurational time-dependent Hartree approach.
van Harrevelt R, Manthe U., J Chem Phys 121(12), 2004
PMID: 15366985
van Harrevelt R, Manthe U., J Chem Phys 121(12), 2004
PMID: 15366985
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
First-principles theory for the H + CH4 --> H2 + CH3 reaction.
Wu T, Werner HJ, Manthe U., Science 306(5705), 2004
PMID: 15618512
Wu T, Werner HJ, Manthe U., Science 306(5705), 2004
PMID: 15618512
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
van, J Chem Phys 121(), 2004
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 16351247
PubMed | Europe PMC
Suchen in