NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii

Mussgnug JH, Wobbe L, Elles I, Claus C, Hamilton M, Fink A, Kahmann U, Kapazoglou A, Mullineaux CW, Hippler M, Nickelsen J, et al. (2005)
Plant Cell 17(12): 3409-3421.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Mussgnug, Jan H.UniBi; Wobbe, LutzUniBi ; Elles, Ingolf; Claus, Christina; Hamilton, Mary; Fink, Andreas; Kahmann, Uwe; Kapazoglou, Aliki; Mullineaux, Conrad W.; Hippler, Michael; Nickelsen, Jörg; Nixon, Peter J.
Alle
Abstract / Bemerkung
Photosynthetic organisms respond to changes in ambient light by modulating the size and composition of their light-harvesting complexes, which in the case of the green alga Chlamydomonas reinhardtii consists of >15 members of a large extended family of chlorophyll binding subunits. How their expression is coordinated is unclear. Here, we describe the analysis of an insertion mutant, state transitions mutant3 (stm3), which we show has increased levels of LHCBM subunits associated with the light-harvesting antenna of photosystem II. The mutated nuclear gene in stm3 encodes the RNA binding protein NAB1 (for putative nucleic acid binding protein). In vitro and in vivo RNA binding and protein expression studies have confirmed that NAB1 differentially binds to LHCBM mRNA in a subpolysomal high molecular weight RNA-protein complex. Binding of NAB1 stabilizes LHCBM mRNA at the preinitiation level via sequestration and thereby represses translation. The specificity and affinity of binding are determined by an RNA sequence motif similar to that used by the Xenopus laevis translation repressor FRGY2, which is conserved to varying degrees in the LHCBM gene family. We conclude from our results that NAB1 plays an important role in controlling the expression of the light-harvesting antenna of photosystem II at the posttranscriptional level. The similarity of NAB1 and FRGY2 of Xenopus implies the existence of similar RNA-masking systems in animals and plants.
Erscheinungsjahr
2005
Zeitschriftentitel
Plant Cell
Band
17
Ausgabe
12
Seite(n)
3409-3421
ISSN
1040-4651
eISSN
1532-298X
Page URI
https://pub.uni-bielefeld.de/record/1601276

Zitieren

Mussgnug JH, Wobbe L, Elles I, et al. NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. Plant Cell. 2005;17(12):3409-3421.
Mussgnug, J. H., Wobbe, L., Elles, I., Claus, C., Hamilton, M., Fink, A., Kahmann, U., et al. (2005). NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. Plant Cell, 17(12), 3409-3421. https://doi.org/10.1105/tpc.105.035774
Mussgnug, Jan H., Wobbe, Lutz, Elles, Ingolf, Claus, Christina, Hamilton, Mary, Fink, Andreas, Kahmann, Uwe, et al. 2005. “NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii”. Plant Cell 17 (12): 3409-3421.
Mussgnug, J. H., Wobbe, L., Elles, I., Claus, C., Hamilton, M., Fink, A., Kahmann, U., Kapazoglou, A., Mullineaux, C. W., Hippler, M., et al. (2005). NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. Plant Cell 17, 3409-3421.
Mussgnug, J.H., et al., 2005. NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. Plant Cell, 17(12), p 3409-3421.
J.H. Mussgnug, et al., “NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii”, Plant Cell, vol. 17, 2005, pp. 3409-3421.
Mussgnug, J.H., Wobbe, L., Elles, I., Claus, C., Hamilton, M., Fink, A., Kahmann, U., Kapazoglou, A., Mullineaux, C.W., Hippler, M., Nickelsen, J., Nixon, P.J., Kruse, O.: NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. Plant Cell. 17, 3409-3421 (2005).
Mussgnug, Jan H., Wobbe, Lutz, Elles, Ingolf, Claus, Christina, Hamilton, Mary, Fink, Andreas, Kahmann, Uwe, Kapazoglou, Aliki, Mullineaux, Conrad W., Hippler, Michael, Nickelsen, Jörg, Nixon, Peter J., and Kruse, Olaf. “NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii”. Plant Cell 17.12 (2005): 3409-3421.

63 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Ocean acidification has little effect on the biochemical composition of the coccolithophore Emiliania huxleyi.
Heidenreich E, Wördenweber R, Kirschhöfer F, Nusser M, Friedrich F, Fahl K, Kruse O, Rost B, Franzreb M, Brenner-Weiß G, Rokitta S., PLoS One 14(7), 2019
PMID: 31291290
Unrestrained markerless trait stacking in Nannochloropsis gaditana through combined genome editing and marker recycling technologies.
Verruto J, Francis K, Wang Y, Low MC, Greiner J, Tacke S, Kuzminov F, Lambert W, McCarren J, Ajjawi I, Bauman N, Kalb R, Hannum G, Moellering ER., Proc Natl Acad Sci U S A 115(30), 2018
PMID: 29987047
A Light Switch Based on Protein S-Nitrosylation Fine-Tunes Photosynthetic Light Harvesting in Chlamydomonas.
Berger H, De Mia M, Morisse S, Marchand CH, Lemaire SD, Wobbe L, Kruse O., Plant Physiol 171(2), 2016
PMID: 27208221
The HSP70 chaperone machines of Chlamydomonas are induced by cold stress.
Maikova A, Zalutskaya Z, Lapina T, Ermilova E., J Plant Physiol 204(), 2016
PMID: 27543887
Carbon Supply and Photoacclimation Cross Talk in the Green Alga Chlamydomonas reinhardtii.
Polukhina I, Fristedt R, Dinc E, Cardol P, Croce R., Plant Physiol 172(3), 2016
PMID: 27637747
Purification, characterization and safety assessment of the introduced cold shock protein B in DroughtGard maize.
Wang C, Burzio LA, Koch MS, Silvanovich A, Bell E., Regul Toxicol Pharmacol 71(2), 2015
PMID: 25545317
Light stress and photoprotection in Chlamydomonas reinhardtii.
Erickson E, Wakao S, Niyogi KK., Plant J 82(3), 2015
PMID: 25758978
Cell Surface and Membrane Engineering: Emerging Technologies and Applications.
Saeui CT, Mathew MP, Liu L, Urias E, Yarema KJ., J Funct Biomater 6(2), 2015
PMID: 26096148
Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii.
Tsai CH, Zienkiewicz K, Amstutz CL, Brink BG, Warakanont J, Roston R, Benning C., Plant J 83(4), 2015
PMID: 26096381
Generation of random mutants to improve light-use efficiency of Nannochloropsis gaditana cultures for biofuel production.
Perin G, Bellan A, Segalla A, Meneghesso A, Alboresi A, Morosinotto T., Biotechnol Biofuels 8(), 2015
PMID: 26413160
Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii.
López García de Lomana A, Schäuble S, Valenzuela J, Imam S, Carter W, Bilgin DD, Yohn CB, Turkarslan S, Reiss DJ, Orellana MV, Price ND, Baliga NS., Biotechnol Biofuels 8(), 2015
PMID: 26633994
In Metabolic Engineering of Eukaryotic Microalgae: Potential and Challenges Come with Great Diversity.
Gimpel JA, Henríquez V, Mayfield SP., Front Microbiol 6(), 2015
PMID: 26696985
Regulation and dynamics of the light-harvesting system.
Rochaix JD., Annu Rev Plant Biol 65(), 2014
PMID: 24471838
Structure and dynamics of thylakoids in land plants.
Pribil M, Labs M, Leister D., J Exp Bot 65(8), 2014
PMID: 24622954
Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii.
Wakao S, Chin BL, Ledford HK, Dent RM, Casero D, Pellegrini M, Merchant SS, Niyogi KK., Elife 3(), 2014
PMID: 24859755
Integration of carbon assimilation modes with photosynthetic light capture in the green alga Chlamydomonas reinhardtii.
Berger H, Blifernez-Klassen O, Ballottari M, Bassi R, Wobbe L, Kruse O., Mol Plant 7(10), 2014
PMID: 25038233
Analysis of differential expression patterns of mRNA and protein during cold-acclimation and de-acclimation in Arabidopsis.
Nakaminami K, Matsui A, Nakagami H, Minami A, Nomura Y, Tanaka M, Morosawa T, Ishida J, Takahashi S, Uemura M, Shirasu K, Seki M., Mol Cell Proteomics 13(12), 2014
PMID: 25277243
The ciliary inner dynein arm, I1 dynein, is assembled in the cytoplasm and transported by IFT before axonemal docking.
Viswanadha R, Hunter EL, Yamamoto R, Wirschell M, Alford LM, Dutcher SK, Sale WS., Cytoskeleton (Hoboken) 71(10), 2014
PMID: 25252184
Post-transcriptional control of light-harvesting genes expression under light stress.
Floris M, Bassi R, Robaglia C, Alboresi A, Lanet E., Plant Mol Biol 82(1-2), 2013
PMID: 23526054
Optimization of light use efficiency for biofuel production in algae.
Simionato D, Basso S, Giacometti GM, Morosinotto T., Biophys Chem 182(), 2013
PMID: 23876487
Plastids are major regulators of light signaling in Arabidopsis.
Ruckle ME, Burgoon LD, Lawrence LA, Sinkler CA, Larkin RM., Plant Physiol 159(1), 2012
PMID: 22383539
Composition, architecture and dynamics of the photosynthetic apparatus in higher plants.
Nevo R, Charuvi D, Tsabari O, Reich Z., Plant J 70(1), 2012
PMID: 22449050
Dynamic Light Regulation of Translation Status in Arabidopsis thaliana.
Juntawong P, Bailey-Serres J., Front Plant Sci 3(), 2012
PMID: 22645595
An intermolecular disulfide-based light switch for chloroplast psbD gene expression in Chlamydomonas reinhardtii.
Schwarz C, Bohne AV, Wang F, Cejudo FJ, Nickelsen J., Plant J 72(3), 2012
PMID: 22725132
CHARACTERIZATION AND EXPRESSION ANALYSIS OF THE Lhcf GENE FAMILY IN EMILIANIA HUXLEYI (HAPTOPHYTA) REVEALS DIFFERENTIAL RESPONSES TO LIGHT AND CO₂
Lefebvre SC, Harris G, Webster R, Leonardos N, Geider RJ, Raines CA, Read BA, Garrido JL., J Phycol 46(1), 2010
PMID: IND44315961
Microalgal hydrogen production.
Kruse O, Hankamer B., Curr Opin Biotechnol 21(3), 2010
PMID: 20399635
Future prospects of microalgal biofuel production systems.
Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B., Trends Plant Sci 15(10), 2010
PMID: 20655798
Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism.
Miller R, Wu G, Deshpande RR, Vieler A, Gärtner K, Li X, Moellering ER, Zäuner S, Cornish AJ, Liu B, Bullard B, Sears BB, Kuo MH, Hegg EL, Shachar-Hill Y, Shiu SH, Benning C., Plant Physiol 154(4), 2010
PMID: 20935180
Arabidopsis cold shock domain proteins: relationships to floral and silique development.
Nakaminami K, Hill K, Perry SE, Sentoku N, Long JA, Karlson DT., J Exp Bot 60(3), 2009
PMID: 19269998
Sensing and responding to excess light.
Li Z, Wakao S, Fischer BB, Niyogi KK., Annu Rev Plant Biol 60(), 2009
PMID: 19575582
Getting the message across: cytoplasmic ribonucleoprotein complexes.
Bailey-Serres J, Sorenson R, Juntawong P., Trends Plant Sci 14(8), 2009
PMID: 19616989
Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in Chlamydomonas.
Wobbe L, Blifernez O, Schwarz C, Mussgnug JH, Nickelsen J, Kruse O., Proc Natl Acad Sci U S A 106(32), 2009
PMID: 19666611
The dynamics of photosynthesis.
Eberhard S, Finazzi G, Wollman FA., Annu Rev Genet 42(), 2008
PMID: 18983262
Functional characterization of two cold shock domain proteins from Oryza sativa.
Chaikam V, Karlson D., Plant Cell Environ 31(7), 2008
PMID: 18397370
Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions.
Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D'Ordine R, Navarro S, Back S, Fernandes M, Targolli J, Dasgupta S, Bonin C, Luethy MH, Heard JE., Plant Physiol 147(2), 2008
PMID: 18524876
Redox signal integration: from stimulus to networks and genes.
Dietz KJ., Physiol Plant 133(3), 2008
PMID: 18429942
Optical properties of microalgae for enhanced biofuels production.
Mitra M, Melis A., Opt Express 16(26), 2008
PMID: 19104614
Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion.
Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B., Plant Biotechnol J 5(6), 2007
PMID: 17764518
Functional conservation of cold shock domains in bacteria and higher plants.
Nakaminami K, Karlson DT, Imai R., Proc Natl Acad Sci U S A 103(26), 2006
PMID: 16788067
Comparative proteomics of high light stress in the model alga Chlamydomonas reinhardtii.
Förster B, Mathesius U, Pogson BJ., Proteomics 6(15), 2006
PMID: 16800035
State transitions revisited-a buffering system for dynamic low light acclimation of Arabidopsis.
Tikkanen M, Piippo M, Suorsa M, Sirpiö S, Mulo P, Vainonen J, Vener AV, Allahverdiyeva Y, Aro EM., Plant Mol Biol 62(4-5), 2006
PMID: 16897465
Mass spectrometric genomic data mining: Novel insights into bioenergetic pathways in Chlamydomonas reinhardtii.
Allmer J, Naumann B, Markert C, Zhang M, Hippler M., Proteomics 6(23), 2006
PMID: 17078018
Quantitative analysis of cell-type specific gene expression in the green alga Volvox carteri.
Nematollahi G, Kianianmomeni A, Hallmann A., BMC Genomics 7(), 2006
PMID: 17184518

49 References

Daten bereitgestellt von Europe PubMed Central.

A superfamily of proteins that contain the cold-shock domain.
Graumann PL, Marahiel MA., Trends Biochem. Sci. 23(8), 1998
PMID: 9757828
RNA-binding strategies common to cold-shock domain- and RNA recognition motif-containing proteins.
Manival X, Ghisolfi-Nieto L, Joseph G, Bouvet P, Erard M., Nucleic Acids Res. 29(11), 2001
PMID: 11376140
A major light-harvesting polypeptide of photosystem II functions in thermal dissipation.
Elrad D, Niyogi KK, Grossman AR., Plant Cell 14(8), 2002
PMID: 12172023
The nucleus-encoded protein MOC1 is essential for mitochondrial light acclimation in Chlamydomonas reinhardtii.
Schonfeld C, Wobbe L, Borgstadt R, Kienast A, Nixon PJ, Kruse O., J. Biol. Chem. 279(48), 2004
PMID: 15448140
Induction of proteins in response to low temperature in Escherichia coli.
Jones PG, VanBogelen RA, Neidhardt FC., J. Bacteriol. 169(5), 1987
PMID: 3553157
Organization of the nuclear ribosomal DNA of Chlamydomonas reinhardii.
Marco Y, Rochaix JD., Mol. Gen. Genet. 177(4), 1980
PMID: 6247613
Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool.
Escoubas JM, Lomas M, LaRoche J, Falkowski PG., Proc. Natl. Acad. Sci. U.S.A. 92(22), 1995
PMID: 7479759
The regulation of circadian period by phototransduction pathways in Arabidopsis.
Millar AJ, Straume M, Chory J, Chua NH, Kay SA., Science 267(5201), 1995
PMID: 7855596
The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas.
Stevens DR, Rochaix JD, Purton S., Mol. Gen. Genet. 251(1), 1996
PMID: 8628243
A case of convergent evolution of nucleic acid binding modules.
Graumann P, Marahiel MA., Bioessays 18(4), 1996
PMID: 8967899
Translational regulation in the chloroplast.
Danon A., Plant Physiol. 115(4), 1997
PMID: 9414544
Isolation and characterization of photoautotrophic mutants of Chlamydomonas reinhardtii deficient in state transition.
Fleischmann MM, Ravanel S, Delosme R, Olive J, Zito F, Wollman FA, Rochaix JD., J. Biol. Chem. 274(43), 1999
PMID: 10521495
Chlorophyll fluorescence--a practical guide.
Maxwell K, Johnson GN., J. Exp. Bot. 51(345), 2000
PMID: 10938857
Molecular recognition in thylakoid structure and function.
Allen JF, Forsberg J., Trends Plant Sci. 6(7), 2001
PMID: 11435171
The major mRNA-associated protein YB-1 is a potent 5' cap-dependent mRNA stabilizer.
Evdokimova V, Ruzanov P, Imataka H, Raught B, Svitkin Y, Ovchinnikov LP, Sonenberg N., EMBO J. 20(19), 2001
PMID: 11574481
Protein phosphorylation in regulation of photosynthesis.
Allen JF., Biochim. Biophys. Acta 1098(3), 1992
PMID: 1310622
High-frequency nuclear transformation of Chlamydomonas reinhardtii.
Kindle KL., Proc. Natl. Acad. Sci. U.S.A. 87(3), 1990
PMID: 2105499
Structure of the Chlamydomonas reinhardtii cabII-1 gene encoding a chlorophyll-a/b-binding protein.
Imbault P, Wittemer C, Johanningmeier U, Jacobs JD, Howell SH., Gene 73(2), 1988
PMID: 3072265
Fluorescence and oxygen evolution from Chlorella pyrenoidosa.
Bonaventura C, Myers J., Biochim. Biophys. Acta 189(3), 1969
PMID: 5370012
A Chlamydomonas protein that binds single-stranded G-strand telomere DNA.
Petracek ME, Konkel LM, Kable ML, Berman J., EMBO J. 13(15), 1994
PMID: 8062839
Visualization of the reconstituted FRGY2-mRNA complexes by electron microscopy.
Matsumoto K, Tanaka KJ, Aoki K, Sameshima M, Tsujimoto M., Biochem. Biophys. Res. Commun. 306(1), 2003
PMID: 12788065
Proteomics of Chlamydomonas reinhardtii light-harvesting proteins.
Stauber EJ, Fink A, Markert C, Kruse O, Johanningmeier U, Hippler M., Eukaryotic Cell 2(5), 2003
PMID: 14555480
Light control of nuclear gene mRNA abundance and translation in tobacco.
Tang L, Bhat S, Petracek ME., Plant Physiol. 133(4), 2003
PMID: 14681536
State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii.
Finazzi G, Furia A, Barbagallo RP, Forti G., Biochim. Biophys. Acta 1413(3), 1999
PMID: 10556624
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16284312
PubMed | Europe PMC

Suchen in

Google Scholar