A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme

Roeser D, Preusser-Kunze A, Schmidt B, Gasow K, Wittmann JG, Dierks T, von Figura K, Rudolph MG (2006)
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 103(1): 81-86.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Roeser, D; Preusser-Kunze, A; Schmidt, B; Gasow, K; Wittmann, JG; Dierks, ThomasUniBi; von Figura, K; Rudolph, MG
Abstract / Bemerkung
The formylglycine (FGly)-generating enzyme (FGE) uses molecular oxygen to oxidize a conserved cysteine residue in all eukaryotic sulfatases to the catalytically active FGly. Sulfatases degrade and remodel sulfate esters, and inactivity of FGE results in multiple sulfatase deficiency, a fatal disease. The previously determined FGE crystal structure revealed two crucial cysteine residues in the active site, one of which was thought to be implicated in substrate binding. The other cysteine residue partakes in a novel oxygenase mechanism that does not rely on any cofactors. Here, we present crystal structures of the individual FGE cysteine mutants and employ chemical probing of wild-type FGE, which defined the cysteines to differ strongly in their reactivity. This striking difference in reactivity is explained by the distinct roles of these cysteine residues in the catalytic mechanism. Hitherto, an enzyme-substrate complex as an essential cornerstone for the structural evaluation of the FGly formation mechanism has remained elusive. We also present two FGE-substrate complexes with pentamer and heptamer peptides that mimic sulfatases. The peptides isolate a small cavity that is a likely binding site for molecular oxygen and could host reactive oxygen intermediates during cysteine oxidation. Importantly, these FGE-peptide complexes directly unveil the molecular bases of FGE substrate binding and specificity. Because of the conserved nature of FGE sequences in other organisms, this binding mechanism is of general validity. Furthermore, several disease-causing mutations in both FGE and sulfatases are explained by this binding mechanism.
Stichworte
enzyme mechanism; posttranslational modification; oxygenase
Erscheinungsjahr
2006
Zeitschriftentitel
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Band
103
Ausgabe
1
Seite(n)
81-86
ISSN
0027-8424
eISSN
1091-6490
Page URI
https://pub.uni-bielefeld.de/record/1600859

Zitieren

Roeser D, Preusser-Kunze A, Schmidt B, et al. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 2006;103(1):81-86.
Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J. G., Dierks, T., von Figura, K., et al. (2006). A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 103(1), 81-86. https://doi.org/10.1073/pnas.0507592102
Roeser, D, Preusser-Kunze, A, Schmidt, B, Gasow, K, Wittmann, JG, Dierks, Thomas, von Figura, K, and Rudolph, MG. 2006. “A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme”. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 103 (1): 81-86.
Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J. G., Dierks, T., von Figura, K., and Rudolph, M. G. (2006). A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 103, 81-86.
Roeser, D., et al., 2006. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 103(1), p 81-86.
D. Roeser, et al., “A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme”, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 103, 2006, pp. 81-86.
Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J.G., Dierks, T., von Figura, K., Rudolph, M.G.: A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 103, 81-86 (2006).
Roeser, D, Preusser-Kunze, A, Schmidt, B, Gasow, K, Wittmann, JG, Dierks, Thomas, von Figura, K, and Rudolph, MG. “A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme”. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 103.1 (2006): 81-86.

43 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Structural distortions due to missense mutations in human formylglycine-generating enzyme leading to multiple sulfatase deficiency.
Meshach Paul D, Chadah T, Senthilkumar B, Sethumadhavan R, Rajasekaran R., J Biomol Struct Dyn 36(13), 2018
PMID: 29048999
A practical approach to ichthyoses with systemic manifestations.
Saral S, Vural A, Wollenberg A, Ruzicka T., Clin Genet 91(6), 2017
PMID: 27377997
Copper is a Cofactor of the Formylglycine-Generating Enzyme.
Knop M, Dang TQ, Jeschke G, Seebeck FP., Chembiochem 18(2), 2017
PMID: 27862795
Structural basis of pH-dependent client binding by ERp44, a key regulator of protein secretion at the ER-Golgi interface.
Watanabe S, Harayama M, Kanemura S, Sitia R, Inaba K., Proc Natl Acad Sci U S A 114(16), 2017
PMID: 28373561
Structural Basis for Copper-Oxygen Mediated C-H Bond Activation by the Formylglycine-Generating Enzyme.
Meury M, Knop M, Seebeck FP., Angew Chem Int Ed Engl 56(28), 2017
PMID: 28544744
Steroid Sulfatase Deficiency and Androgen Activation Before and After Puberty.
Idkowiak J, Taylor AE, Subtil S, O'Neil DM, Vijzelaar R, Dias RP, Amin R, Barrett TG, Shackleton CH, Kirk JM, Moss C, Arlt W., J Clin Endocrinol Metab 101(6), 2016
PMID: 27003302
Natural disease history and characterisation of SUMF1 molecular defects in ten unrelated patients with multiple sulfatase deficiency.
Sabourdy F, Mourey L, Le Trionnaire E, Bednarek N, Caillaud C, Chaix Y, Delrue MA, Dusser A, Froissart R, Garnotel R, Guffon N, Megarbane A, Ogier de Baulny H, Pédespan JM, Pichard S, Valayannopoulos V, Verloes A, Levade T., Orphanet J Rare Dis 10(), 2015
PMID: 25885655
Reconstitution of Formylglycine-generating Enzyme with Copper(II) for Aldehyde Tag Conversion.
Holder PG, Jones LC, Drake PM, Barfield RM, Bañas S, de Hart GW, Baker J, Rabuka D., J Biol Chem 290(25), 2015
PMID: 25931126
Human recombinant lysosomal enzymes produced in microorganisms.
Espejo-Mojica ÁJ, Alméciga-Díaz CJ, Rodríguez A, Mosquera Á, Díaz D, Beltrán L, Díaz S, Pimentel N, Moreno J, Sánchez J, Sánchez OF, Córdoba H, Poutou-Piñales RA, Barrera LA., Mol Genet Metab 116(1-2), 2015
PMID: 26071627
Decline in arylsulfatase B and Increase in chondroitin 4-sulfotransferase combine to increase chondroitin 4-sulfate in traumatic brain injury.
Bhattacharyya S, Zhang X, Feferman L, Johnson D, Tortella FC, Guizzetti M, Tobacman JK., J Neurochem 134(4), 2015
PMID: 25943740
Dealing with oxygen using bare hands.
Mattevi A., FEBS J 282(17), 2015
PMID: 26179614
In Vitro Reconstitution of Formylglycine-Generating Enzymes Requires Copper(I).
Knop M, Engi P, Lemnaru R, Seebeck FP., Chembiochem 16(15), 2015
PMID: 26403223
An Efficient Site-Specific Method for Irreversible Covalent Labeling of Proteins with a Fluorophore.
Liu J, Hanne J, Britton BM, Shoffner M, Albers AE, Bennett J, Zatezalo R, Barfield R, Rabuka D, Lee JB, Fishel R., Sci Rep 5(), 2015
PMID: 26582263
Chemoenzymatic Fc glycosylation via engineered aldehyde tags.
Smith EL, Giddens JP, Iavarone AT, Godula K, Wang LX, Bertozzi CR., Bioconjug Chem 25(4), 2014
PMID: 24702330
A biochemical and physicochemical comparison of two recombinant enzymes used for enzyme replacement therapies of hunter syndrome.
Chung YK, Sohn YB, Sohn JM, Lee J, Chang MS, Kwun Y, Kim CH, Lee JY, Yook YJ, Ko AR, Jin DK., Glycoconj J 31(4), 2014
PMID: 24781369
[Principles of therapeutic approaches for mucopolysaccharidoses].
Caillaud C., Arch Pediatr 21 Suppl 1(), 2014
PMID: 25063383
Reduced Arylsulfatase B activity in leukocytes from cystic fibrosis patients.
Sharma G, Burke J, Bhattacharyya S, Sharma N, Katyal S, Park RL, Tobacman J., Pediatr Pulmonol 48(3), 2013
PMID: 22550062
Rapid degradation of an active formylglycine generating enzyme variant leads to a late infantile severe form of multiple sulfatase deficiency.
Schlotawa L, Radhakrishnan K, Baumgartner M, Schmid R, Schmidt B, Dierks T, Gärtner J., Eur J Hum Genet 21(9), 2013
PMID: 23321616
Impact of salt exposure on N-acetylgalactosamine-4-sulfatase (arylsulfatase B) activity, glycosaminoglycans, kininogen, and bradykinin.
Kotlo K, Bhattacharyya S, Yang B, Feferman L, Tejaskumar S, Linhardt R, Danziger R, Tobacman JK., Glycoconj J 30(7), 2013
PMID: 23385884
X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification.
Goldman PJ, Grove TL, Sites LA, McLaughlin MI, Booker SJ, Drennan CL., Proc Natl Acad Sci U S A 110(21), 2013
PMID: 23650368
Enzymatic labeling of proteins: techniques and approaches.
Rashidian M, Dozier JK, Distefano MD., Bioconjug Chem 24(8), 2013
PMID: 23837885
The structure of human GALNS reveals the molecular basis for mucopolysaccharidosis IV A.
Rivera-Colón Y, Schutsky EK, Kita AZ, Garman SC., J Mol Biol 423(5), 2012
PMID: 22940367
Decreasing activity and altered protein processing of human iduronate-2-sulfatase mutations demonstrated by expression in COS7 cells.
Charoenwattanasatien R, Cairns JR, Keeratichamroen S, Sawangareetrakul P, Tanpaiboon P, Wattanasirichaigoon D, Pangkanon S, Svasti J, Champattanachai V., Biochem Genet 50(11-12), 2012
PMID: 22990955
HpSumf1 is involved in the activation of sulfatases responsible for regulation of skeletogenesis during sea urchin development.
Sakuma T, Ohnishi K, Fujita K, Ochiai H, Sakamoto N, Yamamoto T., Dev Genes Evol 221(3), 2011
PMID: 21706447
Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the alpha/beta-hydrolase fold.
Steiner RA, Janssen HJ, Roversi P, Oakley AJ, Fetzner S., Proc Natl Acad Sci U S A 107(2), 2010
PMID: 20080731
Paralog of the formylglycine-generating enzyme--retention in the endoplasmic reticulum by canonical and noncanonical signals.
Gande SL, Mariappan M, Schmidt B, Pringle TH, von Figura K, Dierks T., FEBS J 275(6), 2008
PMID: 18266766
Oxygen pressurized X-ray crystallography: probing the dioxygen binding site in cofactorless urate oxidase and implications for its catalytic mechanism.
Colloc'h N, Gabison L, Monard G, Altarsha M, Chiadmi M, Marassio G, Sopkova-de Oliveira Santos J, El Hajji M, Castro B, Abraini JH, Prangé T., Biophys J 95(5), 2008
PMID: 18375516
Function and structure of a prokaryotic formylglycine-generating enzyme.
Carlson BL, Ballister ER, Skordalakes E, King DS, Breidenbach MA, Gilmore SA, Berger JM, Bertozzi CR., J Biol Chem 283(29), 2008
PMID: 18390551
Anaerobic sulfatase-maturating enzymes, first dual substrate radical S-adenosylmethionine enzymes.
Benjdia A, Subramanian S, Leprince J, Vaudry H, Johnson MK, Berteau O., J Biol Chem 283(26), 2008
PMID: 18408004
Multistep, sequential control of the trafficking and function of the multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 and ERp44.
Fraldi A, Zito E, Annunziata F, Lombardi A, Cozzolino M, Monti M, Spampanato C, Ballabio A, Pucci P, Sitia R, Cosma MP., Hum Mol Genet 17(17), 2008
PMID: 18508857
Ruffling of metalloporphyrins bound to IsdG and IsdI, two heme-degrading enzymes in Staphylococcus aureus.
Lee WC, Reniere ML, Skaar EP, Murphy ME., J Biol Chem 283(45), 2008
PMID: 18713745
Sulfotransferases, sulfatases and formylglycine-generating enzymes: a sulfation fascination.
Bojarová P, Williams SJ., Curr Opin Chem Biol 12(5), 2008
PMID: 18625336
Partial cure of established disease in an animal model of metachromatic leukodystrophy after intracerebral adeno-associated virus-mediated gene transfer.
Sevin C, Verot L, Benraiss A, Van Dam D, Bonnin D, Nagels G, Fouquet F, Gieselmann V, Vanier MT, De Deyn PP, Aubourg P, Cartier N., Gene Ther 14(5), 2007
PMID: 17093507

36 References

Daten bereitgestellt von Europe PubMed Central.

A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease.
von Figura K, Schmidt B, Selmer T, Dierks T., Bioessays 20(6), 1998
PMID: 9699462
Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme.
Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K., Cell 113(4), 2003
PMID: 12757705
The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases.
Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, Ballabio A., Cell 113(4), 2003
PMID: 12757706
Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum.
Dierks T, Schmidt B, von Figura K., Proc. Natl. Acad. Sci. U.S.A. 94(22), 1997
PMID: 9342345
Characterization of posttranslational formylglycine formation by luminal components of the endoplasmic reticulum.
Fey J, Balleininger M, Borissenko LV, Schmidt B, von Figura K, Dierks T., J. Biol. Chem. 276(50), 2001
PMID: 11600503
Molecular characterization of the human Calpha-formylglycine-generating enzyme.
Preusser-Kunze A, Mariappan M, Schmidt B, Gande SL, Mutenda K, Wenzel D, von Figura K, Dierks T., J. Biol. Chem. 280(15), 2005
PMID: 15657036
Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.
Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG., Cell 121(4), 2005
PMID: 15907468
De novo calcium/sulfur SAD phasing of the human formylglycine-generating enzyme using in-house data.
Roeser D, Dickmanns A, Gasow K, Rudolph MG., Acta Crystallogr. D Biol. Crystallogr. 61(Pt 8), 2005
PMID: 16041070
The CCP4 suite: programs for protein crystallography.
Collaborative Computational Project, Number 4., Acta Crystallogr. D Biol. Crystallogr. 50(Pt 5), 1994
PMID: 15299374
Satisfying hydrogen bonding potential in proteins.
McDonald IK, Thornton JM., J. Mol. Biol. 238(5), 1994
PMID: 8182748
Structure of myohemerythrin in the azidomet state at 1.7/1.3 A resolution.
Sheriff S, Hendrickson WA, Smith JL., J. Mol. Biol. 197(2), 1987
PMID: 3681996

AUTHOR UNKNOWN, 1993
Electrostatics of nanosystems: application to microtubules and the ribosome.
Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA., Proc. Natl. Acad. Sci. U.S.A. 98(18), 2001
PMID: 11517324

AUTHOR UNKNOWN, 1997
Raster3D Version 2.0. A program for photorealistic molecular graphics.
Merritt EA, Murphy ME., Acta Crystallogr. D Biol. Crystallogr. 50(Pt 6), 1994
PMID: 15299354
The atomic structure of protein-protein recognition sites.
Lo Conte L, Chothia C, Janin J., J. Mol. Biol. 285(5), 1999
PMID: 9925793
Crystal structures of two rat MHC class Ia (RT1-A) molecules that are associated differentially with peptide transporter alleles TAP-A and TAP-B.
Rudolph MG, Stevens J, Speir JA, Trowsdale J, Butcher GW, Joly E, Wilson IA., J. Mol. Biol. 324(5), 2002
PMID: 12470953
Structure of Rab escort protein-1 in complex with Rab geranylgeranyltransferase.
Pylypenko O, Rak A, Reents R, Niculae A, Sidorovitch V, Cioaca MD, Bessolitsyna E, Thoma NH, Waldmann H, Schlichting I, Goody RS, Alexandrov K., Mol. Cell 11(2), 2003
PMID: 12620235
Shape complementarity at protein/protein interfaces.
Lawrence MC, Colman PM., J. Mol. Biol. 234(4), 1993
PMID: 8263940
Antibody catalysis of the oxidation of water.
Wentworth P Jr, Jones LH, Wentworth AD, Zhu X, Larsen NA, Wilson IA, Xu X, Goddard WA 3rd, Janda KD, Eschenmoser A, Lerner RA., Science 293(5536), 2001
PMID: 11546867
Oxygenases without requirement for cofactors or metal ions.
Fetzner S., Appl. Microbiol. Biotechnol. 60(3), 2002
PMID: 12436305
Structural and thermodynamic correlates of T cell signaling.
Rudolph MG, Luz JG, Wilson IA., Annu Rev Biophys Biomol Struct 31(), 2001
PMID: 11988465
Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases.
Dierks T, Lecca MR, Schlotterhose P, Schmidt B, von Figura K., EMBO J. 18(8), 1999
PMID: 10205163
Detection of four novel mutations in the iduronate-2-sulfatase gene. Mutations in brief no. 123. Online.
Balzano N, Villani GR, Grosso M, Izzo P, Di Natale P., Hum. Mutat. 11(4), 1998
PMID: 10215411
Molecular basis of mucopolysaccharidosis type II: mutations in the iduronate-2-sulphatase gene.
Hopwood JJ, Bunge S, Morris CP, Wilson PJ, Steglich C, Beck M, Schwinger E, Gal A., Hum. Mutat. 2(6), 1993
PMID: 8111411
Iduronate-2-sulfatase gene mutations in 16 patients with mucopolysaccharidosis type II (Hunter syndrome).
Bunge S, Steglich C, Zuther C, Beck M, Morris CP, Schwinger E, Schinzel A, Hopwood JJ, Gal A., Hum. Mol. Genet. 2(11), 1993
PMID: 8281149
Identification of 16 sulfamidase gene mutations including the common R74C in patients with mucopolysaccharidosis type IIIA (Sanfilippo A).
Bunge S, Ince H, Steglich C, Kleijer WJ, Beck M, Zaremba J, van Diggelen OP, Weber B, Hopwood JJ, Gal A., Hum. Mutat. 10(6), 1997
PMID: 9401012
Expression, localization, structural, and functional characterization of pFGE, the paralog of the Calpha-formylglycine-generating enzyme.
Mariappan M, Preusser-Kunze A, Balleininger M, Eiselt N, Schmidt B, Gande SL, Wenzel D, Dierks T, von Figura K., J. Biol. Chem. 280(15), 2005
PMID: 15708861
Crystal structure of human pFGE, the paralog of the Calpha-formylglycine-generating enzyme.
Dickmanns A, Schmidt B, Rudolph MG, Mariappan M, Dierks T, von Figura K, Ficner R., J. Biol. Chem. 280(15), 2005
PMID: 15687489
Sulphatase activities are regulated by the interaction of sulphatase-modifying factor 1 with SUMF2.
Zito E, Fraldi A, Pepe S, Annunziata I, Kobinger G, Di Natale P, Ballabio A, Cosma MP., EMBO Rep. 6(7), 2005
PMID: 15962010
Molecular and functional analysis of SUMF1 mutations in multiple sulfatase deficiency.
Cosma MP, Pepe S, Parenti G, Settembre C, Annunziata I, Wade-Martins R, Di Domenico C, Di Natale P, Mankad A, Cox B, Uziel G, Mancini GM, Zammarchi E, Donati MA, Kleijer WJ, Filocamo M, Carrozzo R, Carella M, Ballabio A., Hum. Mutat. 23(6), 2004
PMID: 15146462
Mutations of the iduronate-2-sulfatase gene in 12 Polish patients with mucopolysaccharidosis type II (Hunter syndrome).
Popowska E, Rathmann M, Tylki-Szymanska A, Bunge S, Steglich C, Schwinger E, Gal A., Hum. Mutat. 5(1), 1995
PMID: 7728156
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16368756
PubMed | Europe PMC

Suchen in

Google Scholar