Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy

Kottke T, Batschauer A, Ahmad M, Heberle J (2006)
Biochemistry 45(8): 2472-2479.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kottke, TilmanUniBi ; Batschauer, Alfred; Ahmad, Margaret; Heberle, Joachim
Erscheinungsjahr
2006
Zeitschriftentitel
Biochemistry
Band
45
Ausgabe
8
Seite(n)
2472-2479
ISSN
0006-2960
eISSN
1520-4995
Page URI
https://pub.uni-bielefeld.de/record/1600212

Zitieren

Kottke T, Batschauer A, Ahmad M, Heberle J. Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy. Biochemistry. 2006;45(8):2472-2479.
Kottke, T., Batschauer, A., Ahmad, M., & Heberle, J. (2006). Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy. Biochemistry, 45(8), 2472-2479. https://doi.org/10.1021/bi051964b
Kottke, Tilman, Batschauer, Alfred, Ahmad, Margaret, and Heberle, Joachim. 2006. “Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy”. Biochemistry 45 (8): 2472-2479.
Kottke, T., Batschauer, A., Ahmad, M., and Heberle, J. (2006). Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy. Biochemistry 45, 2472-2479.
Kottke, T., et al., 2006. Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy. Biochemistry, 45(8), p 2472-2479.
T. Kottke, et al., “Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy”, Biochemistry, vol. 45, 2006, pp. 2472-2479.
Kottke, T., Batschauer, A., Ahmad, M., Heberle, J.: Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy. Biochemistry. 45, 2472-2479 (2006).
Kottke, Tilman, Batschauer, Alfred, Ahmad, Margaret, and Heberle, Joachim. “Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy”. Biochemistry 45.8 (2006): 2472-2479.

45 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Modulation of the flavin-protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study.
Keirsse-Haquin J, Picaud T, Bordes L, de Gracia AG, Desbois A., Eur Biophys J 47(3), 2018
PMID: 28889232
Atomistic Insights into Cryptochrome Interprotein Interactions.
Kimø SM, Friis I, Solov'yov IA., Biophys J 115(4), 2018
PMID: 30078611
ATP boosts lit state formation and activity of Arabidopsis cryptochrome 2.
Eckel M, Steinchen W, Batschauer A., Plant J 96(2), 2018
PMID: 30044014
Optogenetic activation of Plexin-B1 reveals contact repulsion between osteoclasts and osteoblasts.
Deb Roy A, Yin T, Choudhary S, Rodionov V, Pilbeam CC, Wu YI., Nat Commun 8(), 2017
PMID: 28635959
Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana.
Liu B, Yang Z, Gomez A, Liu B, Lin C, Oka Y., J Plant Res 129(2), 2016
PMID: 26810763
Dealing with light: the widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms.
Fortunato AE, Annunziata R, Jaubert M, Bouly JP, Falciatore A., J Plant Physiol 172(), 2015
PMID: 25087009
Proton transfer to flavin stabilizes the signaling state of the blue light receptor plant cryptochrome.
Hense A, Herman E, Oldemeyer S, Kottke T., J Biol Chem 290(3), 2015
PMID: 25471375
Plant flavoprotein photoreceptors.
Christie JM, Blackwood L, Petersen J, Sullivan S., Plant Cell Physiol 56(3), 2015
PMID: 25516569
The class III cyclobutane pyrimidine dimer photolyase structure reveals a new antenna chromophore binding site and alternative photoreduction pathways.
Scheerer P, Zhang F, Kalms J, von Stetten D, Krauß N, Oberpichler I, Lamparter T., J Biol Chem 290(18), 2015
PMID: 25784552
Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome - protonated and nonprotonated flavin radical-states.
Paulus B, Bajzath C, Melin F, Heidinger L, Kromm V, Herkersdorf C, Benz U, Mann L, Stehle P, Hellwig P, Weber S, Schleicher E., FEBS J 282(16), 2015
PMID: 25879256
Separation of photo-induced radical pair in cryptochrome to a functionally critical distance.
Solov'yov IA, Domratcheva T, Schulten K., Sci Rep 4(), 2014
PMID: 24457842
A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels.
Juhas M, von Zadow A, Spexard M, Schmidt M, Kottke T, Büchel C., FEBS J 281(9), 2014
PMID: 24628952
Observation of magnetic field effects on transient fluorescence spectra of cryptochrome 1 from homing pigeons.
Du XL, Wang J, Pan WS, Liu QJ, Wang XJ, Wu WJ., Photochem Photobiol 90(5), 2014
PMID: 24689535
ATP binding turns plant cryptochrome into an efficient natural photoswitch.
Müller P, Bouly JP, Hitomi K, Balland V, Getzoff ED, Ritz T, Brettel K., Sci Rep 4(), 2014
PMID: 24898692
Optogenetic control of cell function using engineered photoreceptors.
Pathak GP, Vrana JD, Tucker CL., Biol Cell 105(2), 2013
PMID: 23157573
A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception.
Dodson CA, Hore PJ, Wallace MI., Trends Biochem Sci 38(9), 2013
PMID: 23938034
Magnetic field effects in flavoproteins and related systems.
Evans EW, Dodson CA, Maeda K, Biskup T, Wedge CJ, Timmel CR., Interface Focus 3(5), 2013
PMID: 24511388
Reaction kinetics and mechanism of magnetic field effects in cryptochrome.
Solov'yov IA, Schulten K., J Phys Chem B 116(3), 2012
PMID: 22171949
A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii.
Beel B, Prager K, Spexard M, Sasso S, Weiss D, Müller N, Heinnickel M, Dewez D, Ikoma D, Grossman AR, Kottke T, Mittag M., Plant Cell 24(7), 2012
PMID: 22773746
Fourier-transform infrared study of the photoactivation process of Xenopus (6-4) photolyase.
Yamada D, Zhang Y, Iwata T, Hitomi K, Getzoff ED, Kandori H., Biochemistry 51(29), 2012
PMID: 22747528
Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1.
Burney S, Wenzel R, Kottke T, Roussel T, Hoang N, Bouly JP, Bittl R, Heberle J, Ahmad M., Angew Chem Int Ed Engl 51(37), 2012
PMID: 22890584
Decrypting cryptochrome: revealing the molecular identity of the photoactivation reaction.
Solov'yov IA, Domratcheva T, Moughal Shahi AR, Schulten K., J Am Chem Soc 134(43), 2012
PMID: 23009093
The cryptochromes: blue light photoreceptors in plants and animals.
Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M., Annu Rev Plant Biol 62(), 2011
PMID: 21526969
Indication for a radical intermediate preceding the signaling state in the LOV domain photocycle.
Bauer C, Rabl CR, Heberle J, Kottke T., Photochem Photobiol 87(3), 2011
PMID: 21255020
Introduction to the Symposium-in Print: Blue light effects.
Gärtner W, Hegemann P., Photochem Photobiol 87(3), 2011
PMID: 21517885
Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome.
Kondoh M, Shiraishi C, Müller P, Ahmad M, Hitomi K, Getzoff ED, Terazima M., J Mol Biol 413(1), 2011
PMID: 21875594
Photoexcitation of the blue light using FAD photoreceptor AppA results in ultrafast changes to the protein matrix.
Lukacs A, Haigney A, Brust R, Zhao RK, Stelling AL, Clark IP, Towrie M, Greetham GM, Meech SR, Tonge PJ., J Am Chem Soc 133(42), 2011
PMID: 21899315
The Electronic State of Flavoproteins: Investigations with Proton Electron-Nuclear Double Resonance.
Schleicher E, Wenzel R, Ahmad M, Batschauer A, Essen LO, Hitomi K, Getzoff ED, Bittl R, Weber S, Okafuji A., Appl Magn Reson 37(1-4), 2010
PMID: 26089595
Acuity of a cryptochrome and vision-based magnetoreception system in birds.
Solov'yov IA, Mouritsen H, Schulten K., Biophys J 99(1), 2010
PMID: 20655831
Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes.
Hitomi K, DiTacchio L, Arvai AS, Yamamoto J, Kim ST, Todo T, Tainer JA, Iwai S, Panda S, Getzoff ED., Proc Natl Acad Sci U S A 106(17), 2009
PMID: 19359474
Photocycle dynamics of the E149A mutant of cryptochrome 3 from Arabidopsis thaliana.
Zirak P, Penzkofer A, Moldt J, Pokorny R, Batschauer A, Essen LO., J Photochem Photobiol B 97(2), 2009
PMID: 19800811
Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells.
Hoang N, Schleicher E, Kacprzak S, Bouly JP, Picot M, Wu W, Berndt A, Wolf E, Bittl R, Ahmad M., PLoS Biol 6(7), 2008
PMID: 18597555
Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna.
Klar T, Pokorny R, Moldt J, Batschauer A, Essen LO., J Mol Biol 366(3), 2007
PMID: 17188299
Magnetic field effects in Arabidopsis thaliana cryptochrome-1.
Solov'yov IA, Chandler DE, Schulten K., Biophys J 92(8), 2007
PMID: 17259272
Flavin-based Blue-Light photosensors: a photobiophysics update.
Losi A., Photochem Photobiol 83(6), 2007
PMID: 18028200
Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana.
Song SH, Dick B, Penzkofer A, Pokorny R, Batschauer A, Essen LO., J Photochem Photobiol B 85(1), 2006
PMID: 16725342

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16489739
PubMed | Europe PMC

Suchen in

Google Scholar