A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis

Chen M, Hofestädt R (2006)
JOURNAL OF BIOMEDICAL INFORMATICS 39(2): 147-159.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Abstract / Bemerkung
During the past century, studies of metabolic disorders have focused research efforts to improve clinical diagnosis and management, to illuminate metabolic mechanisms, and to find effective treatments. The availability of human genome sequences and trallscriptomic, proteomic, and metabolomic data provides us with a challenging opportunity to develop computational approaches for systematic analysis of metabolic disorders. In this paper, we present a strategy of bioinformatics analysis to exploit the current data available both on genomic and metabolic levels and integrate these at novel levels of understanding of metabolic disorders. PathAligner is applied to predict biomedical data based on a given disorder. A case study on urea cycle disorders is demonstrated. A Petri net model is constructed to estimate the regulation both on genomic and metabolic levels. We also analyze the transcription factors, signaling pathways and associated disorders to interpret the occurrence and regulation of the urea cycle. Availability. PathAligner's metabolic disorder analyzer is available at http://bibiserv.techfak.uni-bielefeld.de/pathaligner/pathaligner_MDA.htm l. Supplementary materials are available at http://www.techflk.ulli-bielefeld.de/-mchen/metabolic-disorders. (c) 2005 Elsevier Inc. All rights reserved.
Stichworte
systems biology; integrative bioinformatics; urea cycle disorders; inborn errors; PathAligner; metabolic disorders; medical bioinformatics
Erscheinungsjahr
2006
Zeitschriftentitel
JOURNAL OF BIOMEDICAL INFORMATICS
Band
39
Ausgabe
2
Seite(n)
147-159
ISSN
1532-0464
Page URI
https://pub.uni-bielefeld.de/record/1599808

Zitieren

Chen M, Hofestädt R. A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. JOURNAL OF BIOMEDICAL INFORMATICS. 2006;39(2):147-159.
Chen, M., & Hofestädt, R. (2006). A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. JOURNAL OF BIOMEDICAL INFORMATICS, 39(2), 147-159. doi:10.1016/j.jbi.2005.05.005
Chen, M., and Hofestädt, R. (2006). A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. JOURNAL OF BIOMEDICAL INFORMATICS 39, 147-159.
Chen, M., & Hofestädt, R., 2006. A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. JOURNAL OF BIOMEDICAL INFORMATICS, 39(2), p 147-159.
M. Chen and R. Hofestädt, “A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis”, JOURNAL OF BIOMEDICAL INFORMATICS, vol. 39, 2006, pp. 147-159.
Chen, M., Hofestädt, R.: A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. JOURNAL OF BIOMEDICAL INFORMATICS. 39, 147-159 (2006).
Chen, M, and Hofestädt, Ralf. “A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis”. JOURNAL OF BIOMEDICAL INFORMATICS 39.2 (2006): 147-159.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 16023895
PubMed | Europe PMC

Suchen in

Google Scholar