Time-resolved microspectroscopy on a single crystal of bacteriorhodopsin reveals lattice-induced differences in the photocycle kinetics

Efremov R, Gordeliy VI, Heberle J, Bueldt G (2006)
BIOPHYSICAL JOURNAL 91(4): 1441-1451.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Efremov, R.; Gordeliy, V. I.; Heberle, J.; Bueldt, G.
Abstract / Bemerkung
The determination of the intermediate state structures of the bacteriorhodopsin photocycle has lead to an unprecedented level of understanding of the catalytic process exerted by a membrane protein. However, the crystallographic structures of the intermediate states are only relevant if the working cycle is not impaired by the crystal lattice. Therefore, we applied visible and Fourier transform infrared spectroscopy (FTIR) microspectroscopy with microsecond time resolution to compare the photoreaction of a single bacteriorhodopsin crystal to that of bacteriorhodopsin residing in the native purple membrane. The analysis of the FTIR difference spectra of the resolved intermediate states reveals great similarity in structural changes taking place in the crystal and in PM. However, the kinetics of the photocycle are significantly altered in the three-dimensional crystal as compared to PM. Strikingly, the L state decay is accelerated in the crystal, whereas the M decay is delayed. The physical origin of this deviation and the implications for trapping of intermediate states are discussed. As a methodological advance, time-resolved step-scan FTIR spectroscopy on a single protein crystal is demonstrated for the first time which may be used in the future to gauge the functionality of other crystallized proteins with the molecular resolution of vibrational spectroscopy.
Erscheinungsjahr
2006
Zeitschriftentitel
BIOPHYSICAL JOURNAL
Band
91
Ausgabe
4
Seite(n)
1441-1451
ISSN
0006-3495
Page URI
https://pub.uni-bielefeld.de/record/1598446

Zitieren

Efremov R, Gordeliy VI, Heberle J, Bueldt G. Time-resolved microspectroscopy on a single crystal of bacteriorhodopsin reveals lattice-induced differences in the photocycle kinetics. BIOPHYSICAL JOURNAL. 2006;91(4):1441-1451.
Efremov, R., Gordeliy, V. I., Heberle, J., & Bueldt, G. (2006). Time-resolved microspectroscopy on a single crystal of bacteriorhodopsin reveals lattice-induced differences in the photocycle kinetics. BIOPHYSICAL JOURNAL, 91(4), 1441-1451. https://doi.org/10.1529/biophysj.106.083345
Efremov, R., Gordeliy, V. I., Heberle, J., and Bueldt, G. 2006. “Time-resolved microspectroscopy on a single crystal of bacteriorhodopsin reveals lattice-induced differences in the photocycle kinetics”. BIOPHYSICAL JOURNAL 91 (4): 1441-1451.
Efremov, R., Gordeliy, V. I., Heberle, J., and Bueldt, G. (2006). Time-resolved microspectroscopy on a single crystal of bacteriorhodopsin reveals lattice-induced differences in the photocycle kinetics. BIOPHYSICAL JOURNAL 91, 1441-1451.
Efremov, R., et al., 2006. Time-resolved microspectroscopy on a single crystal of bacteriorhodopsin reveals lattice-induced differences in the photocycle kinetics. BIOPHYSICAL JOURNAL, 91(4), p 1441-1451.
R. Efremov, et al., “Time-resolved microspectroscopy on a single crystal of bacteriorhodopsin reveals lattice-induced differences in the photocycle kinetics”, BIOPHYSICAL JOURNAL, vol. 91, 2006, pp. 1441-1451.
Efremov, R., Gordeliy, V.I., Heberle, J., Bueldt, G.: Time-resolved microspectroscopy on a single crystal of bacteriorhodopsin reveals lattice-induced differences in the photocycle kinetics. BIOPHYSICAL JOURNAL. 91, 1441-1451 (2006).
Efremov, R., Gordeliy, V. I., Heberle, J., and Bueldt, G. “Time-resolved microspectroscopy on a single crystal of bacteriorhodopsin reveals lattice-induced differences in the photocycle kinetics”. BIOPHYSICAL JOURNAL 91.4 (2006): 1441-1451.

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Chasing the open-state structure of pentameric ligand-gated ion channels.
Gonzalez-Gutierrez G, Wang Y, Cymes GD, Tajkhorshid E, Grosman C., J Gen Physiol 149(12), 2017
PMID: 29089419
Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel.
Lórenz-Fonfría VA, Heberle J., Biochim Biophys Acta 1837(5), 2014
PMID: 24212055
Structural basis for the slow dark recovery of a full-length LOV protein from Pseudomonas putida.
Circolone F, Granzin J, Jentzsch K, Drepper T, Jaeger KE, Willbold D, Krauss U, Batra-Safferling R., J Mol Biol 417(4), 2012
PMID: 22326872
Mutations that stabilize the open state of the Erwinia chrisanthemi ligand-gated ion channel fail to change the conformation of the pore domain in crystals.
Gonzalez-Gutierrez G, Lukk T, Agarwal V, Papke D, Nair SK, Grosman C., Proc Natl Acad Sci U S A 109(16), 2012
PMID: 22474383
Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems.
Ataka K, Kottke T, Heberle J., Angew Chem Int Ed Engl 49(32), 2010
PMID: 20818765
Conformational exchange in a membrane transport protein is altered in protein crystals.
Freed DM, Horanyi PS, Wiener MC, Cafiso DS., Biophys J 99(5), 2010
PMID: 20816073
Crystal structures of different substrates of bacteriorhodopsin's M intermediate at various pH levels.
Yamamoto M, Hayakawa N, Murakami M, Kouyama T., J Mol Biol 393(3), 2009
PMID: 19712684
Synergy within structural biology of single crystal optical spectroscopy and X-ray crystallography.
De la Mora-Rey T, Wilmot CM., Curr Opin Struct Biol 17(5), 2007
PMID: 17959373

67 References

Daten bereitgestellt von Europe PubMed Central.

Functions of a new photoreceptor membrane.
Oesterhelt D, Stoeckenius W., Proc. Natl. Acad. Sci. U.S.A. 70(10), 1973
PMID: 4517939
Bacteriorhodopsin.
Lanyi JK., Annu. Rev. Physiol. 66(), 2004
PMID: 14977418
Lipidic cubic phases: a novel concept for the crystallization of membrane proteins.
Landau EM, Rosenbusch JP., Proc. Natl. Acad. Sci. U.S.A. 93(25), 1996
PMID: 8962086
Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex.
Essen L, Siegert R, Lehmann WD, Oesterhelt D., Proc. Natl. Acad. Sci. U.S.A. 95(20), 1998
PMID: 9751724
A novel three-dimensional crystal of bacteriorhodopsin obtained by successive fusion of the vesicular assemblies.
Takeda K, Sato H, Hino T, Kono M, Fukuda K, Sakurai I, Okada T, Kouyama T., J. Mol. Biol. 283(2), 1998
PMID: 9769218
X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases.
Pebay-Peyroula E, Rummel G, Rosenbusch JP, Landau EM., Science 277(5332), 1997
PMID: 9287223
Structure of bacteriorhodopsin at 1.55 A resolution.
Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK., J. Mol. Biol. 291(4), 1999
PMID: 10452895
Assessing the functionality of a membrane protein in a three-dimensional crystal.
Heberle J, Buldt G, Koglin E, Rosenbusch JP, Landau EM., J. Mol. Biol. 281(4), 1998
PMID: 9710532
Spectroscopic characterization of bacteriorhodopsin's L-intermediate in 3D crystals cooled to 170 K.
Royant A, Edman K, Ursby T, Pebay-Peyroula E, Landau EM, Neutze R., Photochem. Photobiol. 74(6), 2001
PMID: 11783935
Compositional heterogeneity reflects partial dehydration in three-dimensional crystals of bacteriorhodopsin.
Schenkl S, Portuondo E, Zgrablic G, Chergui M, Suske W, Dolder M, Landau EM, Haacke S., J. Mol. Biol. 329(4), 2003
PMID: 12787672
High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle.
Edman K, Nollert P, Royant A, Belrhali H, Pebay-Peyroula E, Hajdu J, Neutze R, Landau EM., Nature 401(6755), 1999
PMID: 10548112
Crystal structures and molecular mechanism of a light-induced signaling switch: The Phot-LOV1 domain from Chlamydomonas reinhardtii.
Fedorov R, Schlichting I, Hartmann E, Domratcheva T, Fuhrmann M, Hegemann P., Biophys. J. 84(4), 2003
PMID: 12668455
Characterization of photocycle intermediates in crystalline photoactive yellow protein.
Kort R, Ravelli RB, Schotte F, Bourgeois D, Crielaard W, Hellingwerf KJ, Wulff M., Photochem. Photobiol. 78(2), 2003
PMID: 12945580

AUTHOR UNKNOWN, 1988
Structure of an early intermediate in the M-state phase of the bacteriorhodopsin photocycle.
Facciotti MT, Rouhani S, Burkard FT, Betancourt FM, Downing KH, Rose RB, McDermott G, Glaeser RM., Biophys. J. 81(6), 2001
PMID: 11721006

AUTHOR UNKNOWN, 2003

AUTHOR UNKNOWN, 1991
Spectrally silent transitions in the bacteriorhodopsin photocycle.
Chizhov I, Chernavskii DS, Engelhard M, Mueller KH, Zubov BV, Hess B., Biophys. J. 71(5), 1996
PMID: 8913574
Chromophore equilibria in bacteriorhodopsin.
Fischer U, Oesterhelt D., Biophys. J. 28(2), 1979
PMID: 122264

AUTHOR UNKNOWN, 1984
The proton release group of bacteriorhodopsin controls the rate of the final step of its photocycle at low pH.
Balashov SP, Lu M, Imasheva ES, Govindjee R, Ebrey TG, Othersen B 3rd, Chen Y, Crouch RK, Menick DR., Biochemistry 38(7), 1999
PMID: 10026285
Identification of retinal isomers isolated from bacteriorhodopsin.
Pettei MJ, Yudd AP, Nakanishi K, Henselman R, Stoeckenius W., Biochemistry 16(9), 1977
PMID: 870032
Retinal isomer ratio in dark-adapted purple membrane and bacteriorhodopsin monomers.
Scherrer P, Mathew MK, Sperling W, Stoeckenius W., Biochemistry 28(2), 1989
PMID: 2713349

AUTHOR UNKNOWN, 1995
Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts.
Bagley K, Dollinger G, Eisenstein L, Singh AK, Zimanyi L., Proc. Natl. Acad. Sci. U.S.A. 79(16), 1982
PMID: 6956906

AUTHOR UNKNOWN, 1997
Structures of aspartic acid-96 in the L and N intermediates of bacteriorhodopsin: analysis by Fourier transform infrared spectroscopy.
Maeda A, Sasaki J, Shichida Y, Yoshizawa T, Chang M, Ni B, Needleman R, Lanyi JK, Lanyi JK., Biochemistry 31(19), 1992
PMID: 1316157
Role of aspartate-96 in proton translocation by bacteriorhodopsin.
Gerwert K, Hess B, Soppa J, Oesterhelt D., Proc. Natl. Acad. Sci. U.S.A. 86(13), 1989
PMID: 2544884
Evidence for a perturbation of arginine-82 in the bacteriorhodopsin photocycle from time-resolved infrared spectra.
Hutson MS, Alexiev U, Shilov SV, Wise KJ, Braiman MS., Biochemistry 39(43), 2000
PMID: 11052671
Tunable laser resonance raman spectroscopy of bacteriorhodopsin.
Lewis A, Spoonhower J, Bogomolni RA, Lozier RH, Stoeckenius W., Proc. Natl. Acad. Sci. U.S.A. 71(11), 1974
PMID: 4530995
Active site lysine backbone undergoes conformational changes in the bacteriorhodopsin photocycle.
Takei H, Gat Y, Rothman Z, Lewis A, Sheves M., J. Biol. Chem. 269(10), 1994
PMID: 8125956
Fourier transform infrared study of the N intermediate of bacteriorhodopsin.
Pfefferle JM, Maeda A, Sasaki J, Yoshizawa T., Biochemistry 30(26), 1991
PMID: 2054353
Millisecond Fourier-transform infrared difference spectra of bacteriorhodopsin's M412 photoproduct.
Braiman MS, Ahl PL, Rothschild KJ., Proc. Natl. Acad. Sci. U.S.A. 84(15), 1987
PMID: 3474649
Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy.
Smith SO, Lugtenburg J, Mathies RA., J. Membr. Biol. 85(2), 1985
PMID: 4009698

AUTHOR UNKNOWN, 1995
Crystal structure of the bromide-bound D85S mutant of bacteriorhodopsin: principles of ion pumping.
Facciotti MT, Cheung VS, Nguyen D, Rouhani S, Glaeser RM., Biophys. J. 85(1), 2003
PMID: 12829500
The structure of bacteriorhodopsin at 3.0 A resolution based on electron crystallography: implication of the charge distribution.
Mitsuoka K, Hirai T, Murata K, Miyazawa A, Kidera A, Kimura Y, Fujiyoshi Y., J. Mol. Biol. 286(3), 1999
PMID: 10024456
Molecular mechanism of vectorial proton translocation by bacteriorhodopsin.
Subramaniam S, Henderson R., Nature 406(6796), 2000
PMID: 10949309
Water and bacteriorhodopsin: structure, dynamics, and function.
Dencher NA, Sass HJ, Buldt G., Biochim. Biophys. Acta 1460(1), 2000
PMID: 10984600
The tertiary structural changes in bacteriorhodopsin occur between M states: X-ray diffraction and Fourier transform infrared spectroscopy.
Sass HJ, Schachowa IW, Rapp G, Koch MH, Oesterhelt D, Dencher NA, Buldt G., EMBO J. 16(7), 1997
PMID: 9130693
Function and picosecond dynamics of bacteriorhodopsin in purple membrane at different lipidation and hydration.
Fitter J, Verclas SA, Lechner RE, Seelert H, Dencher NA., FEBS Lett. 433(3), 1998
PMID: 9744819
Bacteriorhodopsin expressed in Schizosaccharomyces pombe pumps protons through the plasma membrane.
Hildebrandt V, Fendler K, Heberle J, Hoffmann A, Bamberg E, Buldt G., Proc. Natl. Acad. Sci. U.S.A. 90(8), 1993
PMID: 8386375

AUTHOR UNKNOWN, 1999
Physical detwinning of hemihedrally twinned hexagonal crystals of bacteriorhodopsin.
Efremov R, Moukhametzianov R, Buldt G, Gordeliy V., Biophys. J. 87(5), 2004
PMID: 15339801
Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin.
Sass HJ, Buldt G, Gessenich R, Hehn D, Neff D, Schlesinger R, Berendzen J, Ormos P., Nature 406(6796), 2000
PMID: 10949308
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16731567
PubMed | Europe PMC

Suchen in

Google Scholar