Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations

Barsch A, Tellstroem V, Patschkowski T, Küster H, Niehaus K (2006)
Molecular Plant - Microbe Interactions 19(9): 998-1013.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Barsch, Aiko; Tellstroem, Verena; Patschkowski, ThomasUniBi; Küster, Helge; Niehaus, KarstenUniBi
Abstract / Bemerkung
An effective symbiosis between Sinorhizobium meliloti and its host plant Medicago sativa is dependent on a balanced physiological interaction enabling the microsymbiont to fix atmospheric nitrogen. Maintenance of the symbiotic interaction is regulated by still poorly understood control mechanisms. A first step toward a better understanding of nodule metabolism was the determination of characteristic metabolites for alfalfa root nodules. Furthermore, nodules arrested at different developmental stages were analyzed in order to address metabolic changes induced during the progression of nodule formation. Metabolite profiles of bacteroid-free pseudonodule extracts indicated that early nodule developmental processes are accompanied by photosynthate translocation but no massive organic acid formation. To determine metabolic adaptations induced by he presence of nonfixing bacteroids, nodules induced by mutant S. meliloti strains lacking the nitrogenase protein were analyzed. The bacteroids are unable to provide ammonium to the host plant, which is metabolically reflected by reduced levels of characteristic amino acids involved in ammonium fixation. Elevated levels of starch and sugars in Fix-nodules provide strong evidence that plant sanctions preventing a transformation from a symbiotic to a potentially parasitic interaction are not strictly realized via photosynthate supply. Instead, metabolic and gene expression data indicate that alfalfa plants react to nitrogen-fixation-deficient bacteroids with a decreased organic acid synthesis and an early induction of senescence. Noneffective symbiotic interactions resulting from plants nodulated by mutant rhizobia also are reflected in characteristic metabolic changes in leaves. These are typical for nitrogen deficiency, but also highlight metabolites potentially involved in sensing the N status.
gene expression profiles; metabolite profiling; GC-MS
Molecular Plant - Microbe Interactions
Page URI


Barsch A, Tellstroem V, Patschkowski T, Küster H, Niehaus K. Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Molecular Plant - Microbe Interactions. 2006;19(9):998-1013.
Barsch, A., Tellstroem, V., Patschkowski, T., Küster, H., & Niehaus, K. (2006). Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Molecular Plant - Microbe Interactions, 19(9), 998-1013.
Barsch, A., Tellstroem, V., Patschkowski, T., Küster, H., and Niehaus, K. (2006). Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Molecular Plant - Microbe Interactions 19, 998-1013.
Barsch, A., et al., 2006. Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Molecular Plant - Microbe Interactions, 19(9), p 998-1013.
A. Barsch, et al., “Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations”, Molecular Plant - Microbe Interactions, vol. 19, 2006, pp. 998-1013.
Barsch, A., Tellstroem, V., Patschkowski, T., Küster, H., Niehaus, K.: Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Molecular Plant - Microbe Interactions. 19, 998-1013 (2006).
Barsch, Aiko, Tellstroem, Verena, Patschkowski, Thomas, Küster, Helge, and Niehaus, Karsten. “Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations”. Molecular Plant - Microbe Interactions 19.9 (2006): 998-1013.

22 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Metabolomic Profiling of Bradyrhizobium diazoefficiens-Induced Root Nodules Reveals Both Host Plant-Specific and Developmental Signatures.
Lardi M, Murset V, Fischer HM, Mesa S, Ahrens CH, Zamboni N, Pessi G., Int J Mol Sci 17(6), 2016
PMID: 27240350
Approaches for enhancement of N₂ fixation efficiency of chickpea (Cicer arietinum L.) under limiting nitrogen conditions.
Esfahani MN, Sulieman S, Schulze J, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS., Plant Biotechnol J 12(3), 2014
PMID: 24267445
Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions.
Bourcy M, Brocard L, Pislariu CI, Cosson V, Mergaert P, Tadege M, Mysore KS, Udvardi MK, Gourion B, Ratet P., New Phytol 197(4), 2013
PMID: 23278348
MALDI mass spectrometry-assisted molecular imaging of metabolites during nitrogen fixation in the Medicago truncatula-Sinorhizobium meliloti symbiosis.
Ye H, Gemperline E, Venkateshwaran M, Chen R, Delaux PM, Howes-Podoll M, Ané JM, Li L., Plant J 75(1), 2013
PMID: 23551619
Metabolomics of forage plants: a review.
Rasmussen S, Parsons AJ, Jones CS., Ann Bot 110(6), 2012
PMID: 22351485
Inhibition of glutamine synthetase by phosphinothricin leads to transcriptome reprograming in root nodules of Medicago truncatula.
Seabra AR, Pereira PA, Becker JD, Carvalho HG., Mol Plant Microbe Interact 25(7), 2012
PMID: 22414438
Transcription reprogramming during root nodule development in Medicago truncatula.
Moreau S, Verdenaud M, Ott T, Letort S, de Billy F, Niebel A, Gouzy J, de Carvalho-Niebel F, Gamas P., PLoS One 6(1), 2011
PMID: 21304580
Towards a systemic metabolic signature of the arbuscular mycorrhizal interaction.
Fester T, Fetzer I, Buchert S, Lucas R, Rillig MC, Härtig C., Oecologia 167(4), 2011
PMID: 21643790
Nodule-enhanced expression of a sucrose phosphate synthase gene member (MsSPSA) has a role in carbon and nitrogen metabolism in the nodules of alfalfa (Medicago sativa L.).
Aleman L, Ortega JL, Martinez-Grimes M, Seger M, Holguin FO, Uribe DJ, Garcia-Ibilcieta D, Sengupta-Gopalan C., Planta 231(2), 2010
PMID: 19898977
Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum.
Brechenmacher L, Lei Z, Libault M, Findley S, Sugawara M, Sadowsky MJ, Sumner LW, Stacey G., Plant Physiol 153(4), 2010
PMID: 20534735
Pathway of gamma-aminobutyrate metabolism in Rhizobium leguminosarum 3841 and its role in symbiosis.
Prell J, Bourdès A, Karunakaran R, Lopez-Gomez M, Poole P., J Bacteriol 191(7), 2009
PMID: 19181799
TRUNCATULIX--a data warehouse for the legume community.
Henckel K, Runte KJ, Bekel T, Dondrup M, Jakobi T, Küster H, Goesmann A., BMC Plant Biol 9(), 2009
PMID: 19210766
Identification of Fructose-1,6-bisphosphate aldolase cytosolic class I as an NMH7 MADS domain associated protein.
Páez-Valencia J, Valencia-Mayoral P, Sánchez-Gómez C, Contreras-Ramos A, Hernández-Lucas I, Martínez-Barajas E, Gamboa-DeBuen A., Biochem Biophys Res Commun 376(4), 2008
PMID: 18817750
Plant resistance to parasitic plants: molecular approaches to an old foe.
Rispail N, Dita MA, González-Verdejo C, Pérez-de-Luque A, Castillejo MA, Prats E, Román B, Jorrín J, Rubiales D., New Phytol 173(4), 2007
PMID: 17286819
Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice.
Kusano M, Fukushima A, Kobayashi M, Hayashi N, Jonsson P, Moritz T, Ebana K, Saito K., J Chromatogr B Analyt Technol Biomed Life Sci 855(1), 2007
PMID: 17556050
Nutrient sharing between symbionts.
White J, Prell J, James EK, Poole P., Plant Physiol 144(2), 2007
PMID: 17556524

51 References

Daten bereitgestellt von Europe PubMed Central.

Medicago truncatula--a model in the making!
Cook DR., Curr. Opin. Plant Biol. 2(4), 1999
PMID: 10459004
Regulators and regulation of legume root nodule development.
Stougaard J., Plant Physiol. 124(2), 2000
PMID: 11027704
Rhizobium symbiosis: nod factors in perspective.
Long SR., Plant Cell 8(10), 1996
PMID: 8914326
Nitrate Acts as a Signal to Induce Organic Acid Metabolism and Repress Starch Metabolism in Tobacco.
Scheible WR, Gonzalez-Fontes A, Lauerer M, Muller-Rober B, Caboche M, Stitt M., Plant Cell 9(5), 1997
PMID: 12237366
Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus.
Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, Udvardi MK., Plant J. 39(4), 2004
PMID: 15272870
Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program.
El Yahyaoui F, Kuster H, Ben Amor B, Hohnjec N, Puhler A, Becker A, Gouzy J, Vernie T, Gough C, Niebel A, Godiard L, Gamas P., Plant Physiol. 136(2), 2004
PMID: 15466239
cDNA macroarray analysis of gene expression in ineffective nodules induced on the Lotus japonicus sen1 mutant.
Suganuma N, Yamamoto A, Itou A, Hakoyama T, Banba M, Hata S, Kawaguchi M, Kouchi H., Mol. Plant Microbe Interact. 17(11), 2004
PMID: 15553247
Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions.
Becker A, Berges H, Krol E, Bruand C, Ruberg S, Capela D, Lauber E, Meilhoc E, Ampe F, de Bruijn FJ, Fourment J, Francez-Charlot A, Kahn D, Kuster H, Liebe C, Puhler A, Weidner S, Batut J., Mol. Plant Microbe Interact. 17(3), 2004
PMID: 15000396
Regulation of oxygen diffusion in legume nodules.
Minchin FR., Soil Biol. Biochem. 29(5/6), 1997
PMID: IND20623393
Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems.
Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie A., Plant Cell 13(1), 2001
PMID: 11158526
Sucrose synthase in legume nodules is essential for nitrogen fixation
Gordon AJ, Minchin FR, James CL, Komina O., Plant Physiol. 120(3), 1999
PMID: 10398723
Carbon in N2 Fixation: Limitation or Exquisite Adaptation
Vance, Annual Review of Plant Physiology and Plant Molecular Biology 42(1), 1991
Two classes of Rhizobium meliloti infection mutants differ in exopolysaccharide production and in coinoculation properties with nodulation mutants
Müller, MGG Molecular & General Genetics 211(1), 1988
Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism.
Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW., J. Exp. Bot. 56(410), 2004
PMID: 15596476
Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS.
Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM., J. Exp. Bot. 56(410), 2004
PMID: 15618298
Metabolism of Rhizobium Bacteroids
Lodwig, Critical Reviews in Plant Sciences 22(1), 2003
Products of Dark CO(2) Fixation in Pea Root Nodules Support Bacteroid Metabolism.
Rosendahl L, Vance CP, Pedersen WB., Plant Physiol. 93(1), 1990
PMID: 16667422
Metabolite profiling for plant functional genomics.
Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L., Nat. Biotechnol. 18(11), 2000
PMID: 11062433
The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background
STITT, Plant Cell & Environment 22(6), 1999
The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylase is modified by phosphate and nitrogen
Nielsen, Plant Cell & Environment 21(5), 1998
Regulation of symbiotic root nodule development.
Schultze M, Kondorosi A., Annu. Rev. Genet. 32(), 1998
PMID: 9928474
Primary assimilation of nitrogen in alfalfa nodules: molecular features of the enzymes involved
VANCE, Plant Science 101(1), 1994
Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis.
Lodwig EM, Hosie AH, Bourdes A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS., Nature 422(6933), 2003
PMID: 12700763
Transcriptome analysis of Sinorhizobium meliloti during symbiosis.
Ampe F, Kiss E, Sabourdy F, Batut J., Genome Biol. 4(2), 2003
PMID: 12620125
Quantitative metabolome analysis using capillary electrophoresis mass spectrometry.
Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T., J. Proteome Res. 2(5), 2003
PMID: 14582645
Sugar repression of photosynthesis: the role of carbohydrates in signalling nitrogen deficiency through source:sink imbalance
PAUL, Plant Cell & Environment 20(1), 1997
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
How are nitrogen fixation rates regulated in legumes?
Schulze J., Journal of plant nutrition and soil science = Zeitschrift fur Pflanzenernahrung und Bodenkunde. 167(2), 2004
PMID: IND43624944
Organogenesis of legume root nodules.
Patriarca EJ, Tate R, Ferraioli S, Iaccarino M., Int. Rev. Cytol. 234(), 2004
PMID: 15066376
Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry.
Barsch A, Patschkowski T, Niehaus K., Funct. Integr. Genomics 4(4), 2004
PMID: 15372312
Plant defence and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPS I)-deficient Rhizobium meliloti mutant
Niehaus, Planta 190(3), 1993
Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen.
Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M., Plant Physiol. 136(1), 2004
PMID: 15375205
Quantitative measurement of starch in very small amounts of leaf tissue
MacRae, Planta 96(2), 1971
A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction.
Barnett MJ, Toman CJ, Fisher RF, Long SR., Proc. Natl. Acad. Sci. U.S.A. 101(47), 2004
PMID: 15542588
GMD@CSB.DB: the Golm Metabolome Database.
Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D., Bioinformatics 21(8), 2004
PMID: 15613389
From genomics to chemical genomics: new developments in KEGG.
Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M., Nucleic Acids Res. 34(Database issue), 2006
PMID: 16381885
Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression.
Starker CG, Parra-Colmenares AL, Smith L, Mitra RM, Long SR., Plant Physiol. 140(2), 2006
PMID: 16407449
The composite genome of the legume symbiont Sinorhizobium meliloti.
Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J., Science 293(5530), 2001
PMID: 11474104
Control of nitrogen and carbon metabolism in root nodules
Vance, Physiologia Plantarum 85(2), 1992
Rhizobium meliloti Mutants Defective in Symbiotic Nitrogen Fixation Affect the Oxygen Gradient in Alfalfa (Medicago sativa) Root Nodules
MASEPOHL, Journal of Experimental Botany 44(2), 1993


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 16941904
PubMed | Europe PMC

Suchen in

Google Scholar