Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds

Buitink J, Leger JJ, Guisle I, Vu BL, Wuilleme S, Lamirault G, Le Bars A, Le Meur N, Becker A, Kuester H, Leprince O (2006)
PLANT JOURNAL 47(5): 735-750.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Buitink, Julia; Leger, Jean J.; Guisle, Isabelle; Vu, Benoit Ly; Wuilleme, Sylvie; Lamirault, Guillaume; Le Bars, Alice; Le Meur, Nolwenn; Becker, Anke; Kuester, Helge; Leprince, Olivier
Abstract / Bemerkung
To investigate regulatory processes and protective mechanisms leading to desiccation tolerance (DT) in seeds, 16086-element microarrays were used to monitor changes in the transcriptome of desiccation-sensitive 3-mm-long radicles of Medicago truncatula seeds at different time points during incubation in a polyethylene glycol (PEG) solution at -1.7 MPa, resulting in a gradual re-establishment of DT. Gene profiling was also performed on embryos before and after the acquisition of DT during maturation. More than 1300 genes were differentially expressed during the PEG incubation. A large number of genes involved in C metabolism are expressed during the re-establishment of DT. Quantification of C reserves confirms that lipids, starch and oligosaccharides were mobilised, coinciding with the production of sucrose during the early osmotic adjustment. Several clusters of gene profiles were identified with different time-scales. Genes expressed early during the PEG incubation belonged to classes involved in early stress and adaptation responses. Interestingly, several regulatory genes typically expressed during abiotic/drought stresses were also upregulated during maturation, arguing for the partial overlap of ABA-dependent and -independent regulatory pathways involved in both drought and DT. At later time points, in parallel to the re-establishment of DT, upregulated genes are comparable with those involved in late seed maturation. Concomitantly, a massive repression of genes belonging to numerous classes occurred, including cell cycle, biogenesis, primary and energy metabolism. The re-establishment of DT in the germinated radicles appears to concur with a partial return to the quiescent state prior to germination.
C; Medicago truncatula; gene profiling; seeds; desiccation tolerance; metabolism; germination
Page URI


Buitink J, Leger JJ, Guisle I, et al. Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds. PLANT JOURNAL. 2006;47(5):735-750.
Buitink, J., Leger, J. J., Guisle, I., Vu, B. L., Wuilleme, S., Lamirault, G., Le Bars, A., et al. (2006). Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds. PLANT JOURNAL, 47(5), 735-750.
Buitink, J., Leger, J. J., Guisle, I., Vu, B. L., Wuilleme, S., Lamirault, G., Le Bars, A., Le Meur, N., Becker, A., Kuester, H., et al. (2006). Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds. PLANT JOURNAL 47, 735-750.
Buitink, J., et al., 2006. Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds. PLANT JOURNAL, 47(5), p 735-750.
J. Buitink, et al., “Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds”, PLANT JOURNAL, vol. 47, 2006, pp. 735-750.
Buitink, J., Leger, J.J., Guisle, I., Vu, B.L., Wuilleme, S., Lamirault, G., Le Bars, A., Le Meur, N., Becker, A., Kuester, H., Leprince, O.: Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds. PLANT JOURNAL. 47, 735-750 (2006).
Buitink, Julia, Leger, Jean J., Guisle, Isabelle, Vu, Benoit Ly, Wuilleme, Sylvie, Lamirault, Guillaume, Le Bars, Alice, Le Meur, Nolwenn, Becker, Anke, Kuester, Helge, and Leprince, Olivier. “Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds”. PLANT JOURNAL 47.5 (2006): 735-750.

63 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Integrative analysis of the late maturation programme and desiccation tolerance mechanisms in intermediate coffee seeds.
Dussert S, Serret J, Bastos-Siqueira A, Morcillo F, Déchamp E, Rofidal V, Lashermes P, Etienne H, JOët T., J Exp Bot 69(7), 2018
PMID: 29361125
Common Stress Transcriptome Analysis Reveals Functional and Genomic Architecture Differences Between Early and Delayed Response Genes.
Lin CW, Huang LY, Huang CL, Wang YC, Lai PH, Wang HV, Chang WC, Chiang TY, Huang HJ., Plant Cell Physiol 58(3), 2017
PMID: 28115496
Angiosperm Plant Desiccation Tolerance: Hints from Transcriptomics and Genome Sequencing.
Giarola V, Hou Q, Bartels D., Trends Plant Sci 22(8), 2017
PMID: 28622918
Emerging Roles and Landscape of Translating mRNAs in Plants.
Sablok G, Powell JJ, Kazan K., Front Plant Sci 8(), 2017
PMID: 28919899
Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach.
Kubala S, Garnczarska M, Wojtyla Ł, Clippe A, Kosmala A, Żmieńko A, Lutts S, Quinet M., Plant Sci 231(), 2015
PMID: 25575995
Acquisition and loss of desiccation tolerance in seeds: from experimental model to biological relevance.
Dekkers BJ, Costa MC, Maia J, Bentsink L, Ligterink W, Hilhorst HW., Planta 241(3), 2015
PMID: 25567203
A gene co-expression network predicts functional genes controlling the re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds.
Costa MC, Righetti K, Nijveen H, Yazdanpanah F, Ligterink W, Buitink J, Hilhorst HW., Planta 242(2), 2015
PMID: 25809152
A molecular physiological review of vegetative desiccation tolerance in the resurrection plant Xerophyta viscosa (Baker).
Farrant JM, Cooper K, Hilgart A, Abdalla KO, Bentley J, Thomson JA, Dace HJ, Peton N, Mundree SG, Rafudeen MS., Planta 242(2), 2015
PMID: 25998524
Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds.
Maia J, Dekkers BJ, Dolle MJ, Ligterink W, Hilhorst HW., New Phytol 203(1), 2014
PMID: 24697728
Nodule performance within a changing environmental context.
Aranjuelo I, Arrese-Igor C, Molero G., J Plant Physiol 171(12), 2014
PMID: 24974334
Annexin5 plays a vital role in Arabidopsis pollen development via Ca2+-dependent membrane trafficking.
Zhu J, Wu X, Yuan S, Qian D, Nan Q, An L, Xiang Y., PLoS One 9(7), 2014
PMID: 25019283
A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana.
Liu TW, Niu L, Fu B, Chen J, Wu FH, Chen J, Wang WH, Hu WJ, He JX, Zheng HL., Genome 56(1), 2013
PMID: 23379338
Drought tolerance acquisition in Eucalyptus globulus (Labill.): a research on plant morphology, physiology and proteomics.
Valdés AE, Irar S, Majada JP, Rodríguez A, Fernández B, Pagès M., J Proteomics 79(), 2013
PMID: 23313219
Deep sequencing of RNA from ancient maize kernels.
Fordyce SL, Ávila-Arcos MC, Rasmussen M, Cappellini E, Romero-Navarro JA, Wales N, Alquezar-Planas DE, Penfield S, Brown TA, Vielle-Calzada JP, Montiel R, Jørgensen T, Odegaard N, Jacobs M, Arriaza B, Higham TF, Ramsey CB, Willerslev E, Gilbert MT., PLoS One 8(1), 2013
PMID: 23326310
Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity.
Châtelain E, Satour P, Laugier E, Ly Vu B, Payet N, Rey P, Montrichard F., Proc Natl Acad Sci U S A 110(9), 2013
PMID: 23401556
Molecular switch for cold acclimation -- anatomy of the cold-inducible promoter in plants.
Jiang Y, Peng D, Bai LP, Ma H, Chen LJ, Zhao MH, Xu ZJ, Guo ZF., Biochemistry (Mosc) 78(4), 2013
PMID: 23590437
A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds.
Verdier J, Lalanne D, Pelletier S, Torres-Jerez I, Righetti K, Bandyopadhyay K, Leprince O, Chatelain E, Vu BL, Gouzy J, Gamas P, Udvardi MK, Buitink J., Plant Physiol 163(2), 2013
PMID: 23929721
LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance.
Delahaie J, Hundertmark M, Bove J, Leprince O, Rogniaux H, Buitink J., J Exp Bot 64(14), 2013
PMID: 24043848
Changes in RNA Splicing in Developing Soybean (Glycine max) Embryos.
Aghamirzaie D, Nabiyouni M, Fang Y, Klumas C, Heath LS, Grene R, Collakova E., Biology (Basel) 2(4), 2013
PMID: 24833227
An emerging picture of the seed desiccome: confirmed regulators and newcomers identified using transcriptome comparison.
Terrasson E, Buitink J, Righetti K, Ly Vu B, Pelletier S, Zinsmeister J, Lalanne D, Leprince O., Front Plant Sci 4(), 2013
PMID: 24376450
Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor.
Chu P, Chen H, Zhou Y, Li Y, Ding Y, Jiang L, Tsang EW, Wu K, Huang S., Planta 235(6), 2012
PMID: 22167260
Temporal profiling of the heat-stable proteome during late maturation of Medicago truncatula seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity.
Chatelain E, Hundertmark M, Leprince O, Le Gall S, Satour P, Deligny-Penninck S, Rogniaux H, Buitink J., Plant Cell Environ 35(8), 2012
PMID: 22380487
Laohavisit A, Davies JM., New Phytol 189(1), 2011
PMID: 21083562
Salt and genotype impact on plant physiology and root proteome variations in tomato.
Manaa A, Ben Ahmed H, Valot B, Bouchet JP, Aschi-Smiti S, Causse M, Faurobert M., J Exp Bot 62(8), 2011
PMID: 21330356
Programming desiccation-tolerance: from plants to seeds to resurrection plants.
Farrant JM, Moore JP., Curr Opin Plant Biol 14(3), 2011
PMID: 21511516
Novel clues on abiotic stress tolerance emerge from embryo proteome analyses of rice varieties with contrasting stress adaptation.
Farinha AP, Irar S, de Oliveira E, Oliveira MM, Pagès M., Proteomics 11(12), 2011
PMID: 21595035
The re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds and its associated transcriptome.
Maia J, Dekkers BJ, Provart NJ, Ligterink W, Hilhorst HW., PLoS One 6(12), 2011
PMID: 22195004
Sucrose non-fermenting kinase 1 (SnRK1) coordinates metabolic and hormonal signals during pea cotyledon growth and differentiation.
Radchuk R, Emery RJ, Weier D, Vigeolas H, Geigenberger P, Lunn JE, Feil R, Weschke W, Weber H., Plant J 61(2), 2010
PMID: 19845880
MtPM25 is an atypical hydrophobic late embryogenesis-abundant protein that dissociates cold and desiccation-aggregated proteins.
Boucher V, Buitink J, Lin X, Boudet J, Hoekstra FA, Hundertmark M, Renard D, Leprince O., Plant Cell Environ 33(3), 2010
PMID: 20002332
Noninvasive diagnosis of seed viability using infrared thermography.
Kranner I, Kastberger G, Hartbauer M, Pritchard HW., Proc Natl Acad Sci U S A 107(8), 2010
PMID: 20133712
Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum.
Rodriguez MC, Edsgärd D, Hussain SS, Alquezar D, Rasmussen M, Gilbert T, Nielsen BH, Bartels D, Mundy J., Plant J 63(2), 2010
PMID: 20444235
What is stress? Concepts, definitions and applications in seed science.
Kranner I, Minibayeva FV, Beckett RP, Seal CE., New Phytol 188(3), 2010
PMID: 20854396
Identification of transcription factors involved in root apex responses to salt stress in Medicago truncatula.
Gruber V, Blanchet S, Diet A, Zahaf O, Boualem A, Kakar K, Alunni B, Udvardi M, Frugier F, Crespi M., Mol Genet Genomics 281(1), 2009
PMID: 18987888
Translating Medicago truncatula genomics to crop legumes.
Young ND, Udvardi M., Curr Opin Plant Biol 12(2), 2009
PMID: 19162532
Using a model-based framework for analysing genetic diversity during germination and heterotrophic growth of Medicago truncatula.
Brunel S, Teulat-Merah B, Wagner MH, Huguet T, Prosperi JM, Dürr C., Ann Bot 103(7), 2009
PMID: 19251713
Proteomic analysis of the development and germination of date palm (Phoenix dactylifera L.) zygotic embryos.
Sghaier-Hammami B, Valledor L, Drira N, Jorrin-Novo JV., Proteomics 9(9), 2009
PMID: 19402047
Post-genomics studies of developmental processes in legume seeds.
Thompson R, Burstin J, Gallardo K., Plant Physiol 151(3), 2009
PMID: 19675147
From Avicennia to Zizania: seed recalcitrance in perspective.
Berjak P, Pammenter NW., Ann Bot 101(2), 2008
PMID: 17704237
Annexins: multifunctional components of growth and adaptation.
Mortimer JC, Laohavisit A, Macpherson N, Webb A, Brownlee C, Battey NH, Davies JM., J Exp Bot 59(3), 2008
PMID: 18267940
Expressed sequence tag analysis of the response of apple (Malus x domestica'Royal Gala') to low temperature and water deficit.
Wisniewski M, Bassett C, Norelli J, Macarisin D, Artlip T, Gasic K, Korban S., Physiol Plant 133(2), 2008
PMID: 18298416
Expressed sequence tag analysis of the response of apple (Malus x domestica'Royal Gala') to low temperature and water deficit
Wisniewski Michael, Bassett Carole, Norelli John, Macarisin Dumitru, Artlip Timothy, Gasic Ksenija, Korban Schuyler., Physiol Plant 133(2), 2008
PMID: IND44051586
The seeds of life.
Job D, Caboche M., C R Biol 331(10), 2008
PMID: 18926484
[Postgenomic analysis of desiccation tolerance].
Buitink J, Leprince O., J Soc Biol 202(3), 2008
PMID: 18980743
SuperSAGE: the drought stress-responsive transcriptome of chickpea roots.
Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P., BMC Genomics 9(), 2008
PMID: 19025623
Transcript profiles uncover temporal and stress-induced changes of metabolic pathways in germinating sugar beet seeds.
Pestsova E, Meinhard J, Menze A, Fischer U, Windhövel A, Westhoff P., BMC Plant Biol 8(), 2008
PMID: 19046420
Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches.
Sreenivasulu N, Sopory SK, Kavi Kishor PB., Gene 388(1-2), 2007
PMID: 17134853
Legume transcription factors: global regulators of plant development and response to the environment.
Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang JY, Benedito V, Hofer JM, Chueng F, Town CD., Plant Physiol 144(2), 2007
PMID: 17556517
Using genomics to study legume seed development.
Le BH, Wagmaister JA, Kawashima T, Bui AQ, Harada JJ, Goldberg RB., Plant Physiol 144(2), 2007
PMID: 17556519
Combined networks regulating seed maturation.
Gutierrez L, Van Wuytswinkel O, Castelain M, Bellini C., Trends Plant Sci 12(7), 2007
PMID: 17588801

52 References

Daten bereitgestellt von Europe PubMed Central.

Alpert, 2002
An integrated overview of seed development in Arabidopsis thaliana ecotype WS
Baud, Plant Physiol. Biochem. 40(), 2002
The Medicago Genome Initiative: a model legume database.
Bell CJ, Dixon RA, Farmer AD, Flores R, Inman J, Gonzales RA, Harrison MJ, Paiva NL, Scott AD, Weller JW, May GD., Nucleic Acids Res. 29(1), 2001
PMID: 11125064
Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray an differential expression data
Bray, Annu Bot. 89(), 2002
Induction of desiccation tolerance in germinated seeds.
Bruggink T, Toorn Pvander., Seed Sci. Res. 5(1), 1995
PMID: IND20517155
A physiological model to study the re-establishment of desiccation tolerance in germinated radicles of Medicago truncatula Gaertn
Buitink, Seeds. Seed Sci. Res. 13(), 2003
Starvation, osmotic stress and desiccation tolerance lead to expression of different genes of the regulatory β and γ subunits of the SnRK1 complex in germinating seeds of Medicago truncatula
Buitink, Plant Cell Environ. 27(), 2004
Differential molecular responses to abscisic acid and osmotic stress in viviparous maize embryos
Butler, Planta 189(), 1993
Towards transcript profiling of desiccation tolerance in Xerophyta humilis: construction of a normalized 11 k X. humilis xDNA set and microarray expression analysis of 424 cDNAs in response to dehydration
Collet, Physiol. Plant. 122(), 2004
The lipocalin protein family: structure and function
Flower, Biochem. J. 15(), 1996
Microarray analysis of developing Arabidopsis seeds.
Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J., Plant Physiol. 124(4), 2000
PMID: 11115875
The competence to acquire cellular desiccation tolerance is independent of seed morphological development.
Golovina EA, Hoekstra FA, Van Aelst AC., J. Exp. Bot. 52(358), 2001
PMID: 11432918
Seed 1-cysteine peroxiredoxin antioxidants are not involved in dormancy, but contribute to inhibition of germination during stress.
Haslekas C, Viken MK, Grini PE, Nygaard V, Nordgard SH, Meza TJ, Aalen RB., Plant Physiol. 133(3), 2003
PMID: 14526116
Transcriptional programs of early reproductive stages in Arabidopsis.
Hennig L, Gruissem W, Grossniklaus U, Kohler C., Plant Physiol. 135(3), 2004
PMID: 15247381
Changes in soluble sugars in relation to desiccation tolerance in cauliflower seeds.
Hoekstra FA, Haigh AM, Tetteroo FAA, Roekel Tvan., Seed Sci. Res. 4(2), 1994
PMID: IND20510001
Mechanisms of plant desiccation tolerance
Hoekstra, Trends Plant Sci. 5(), 2001
Ingram J, Bartels D., Annu. Rev. Plant Physiol. Plant Mol. Biol. 47(), 1996
PMID: 15012294
Two novel MYB homologues with changed expression in late embryogenesis-defective Arabidopsis mutants.
Kirik V, Kolle K, Misera S, Baumlein H., Plant Mol. Biol. 37(5), 1998
PMID: 9678577
A dynamic, web-accessible resource to process raw microarray scan data into consolidated gene expression values: importance of replication.
Le Meur N, Lamirault G, Bihouee A, Steenman M, Bedrine-Ferran H, Teusan R, Ramstein G, Leger JJ., Nucleic Acids Res. 32(18), 2004
PMID: 15475389
Metabolic dysfunction and unabated respiration precede the loss of membrane integrity during dehydration of germinating radicles.
Leprince O, Harren FJ, Buitink J, Alberda M, Hoekstra FA., Plant Physiol. 122(2), 2000
PMID: 10677452
Cyclic AMP-dependent protein kinase: role in anoxia and freezing tolerance of the marine periwinkle Littorina littorea
MacDonald, Marine Biol. 133(), 1999
Regulation of ground squirrel Na+K+-ATPase activity by reversible phosphorylation during hibernation
MacDonald, Biochem. Biophs. Res. Comm. 254(), 1999
The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination.
Nambara E, Hayama R, Tsuchiya Y, Nishimura M, Kawaide H, Kamiya Y, Naito S., Dev. Biol. 220(2), 2000
PMID: 10753527
The isolation of genes from the resurrection grass Sporobolus stapfianus which are induced during severe drought stress
Neale, Plant Cell Environ. 23(), 2000
Differential accumulation of water-stress related proteins, sucrose synthase and soluble sugars in Populus genotypes which differ in their water-stress response
Pelah, Physiol. Plant. 99(), 1997
Computational analysis of microarray data
Quackenbush, Nature Rev. Genet. 2(), 2001
Drought- and desiccation-induced modulation of gene expression in plants
Ramanjulu, Plant, Cell Environ. 25(), 2002
Sequential steps for developmental arrest in Arabidopsis seeds.
Raz V, Bergervoet JH, Koornneef M., Development 128(2), 2001
PMID: 11124119
Contrapuntal networks of gene expression during Arabidopsis seed filling.
Ruuska SA, Girke T, Benning C, Ohlrogge JB., Plant Cell 14(6), 2002
PMID: 12084821
Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray.
Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K., Plant J. 31(3), 2002
PMID: 12164808
Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level.
Soeda Y, Konings MC, Vorst O, van Houwelingen AM, Stoopen GM, Maliepaard CA, Kodde J, Bino RJ, Groot SP, van der Geest AH., Plant Physiol. 137(1), 2004
PMID: 15618428
Liver energy metabolism during hybernation in the golden-mantled ground squirrel Spermophilus lateralis
Staples, Curr. J. Zoo 74(), 1997
Genesis: cluster analysis of microarray data.
Sturn A, Quackenbush J, Trajanoski Z., Bioinformatics 18(1), 2002
PMID: 11836235
Snf1-related protein kinase 1 is needed for growth in a normal day-night light cycle.
Thelander M, Olsson T, Ronne H., EMBO J. 23(8), 2004
PMID: 15057278
Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions.
Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K., Proc. Natl. Acad. Sci. U.S.A. 97(21), 2000
PMID: 11005831
A small-scale procedure for the rapid isolation of plant RNAs.
Verwoerd TC, Dekker BM, Hoekema A., Nucleic Acids Res. 17(6), 1989
PMID: 2468132
Translational control in plant stress: the formation of messenger ribonucleoprotein particles (mRNPs) in response to desiccation of Tortula ruralis gametophytes
Wood, Plant J. 18(), 1999


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 16923015
PubMed | Europe PMC

Suchen in

Google Scholar