Protons @ interfaces: Implications for biological energy conversion

Mulkidjanian AY, Heberle J, Cherepanov DA (2006)
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1757(8): 913-930.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Mulkidjanian, Armen Y.; Heberle, Joachim; Cherepanov, Dmitry A.
Abstract / Bemerkung
The review focuses on the anisotropy of proton transfer at the surface of biological membranes. We consider (i) the data from "pulsed" experiments, where light-triggered enzymes capture or eject protons at the membrane surface, (ii) the electrostatic properties of water at charged interfaces, and (iii) the specific structural attributes of proton-translocating enzymes. The pulsed experiments revealed that proton exchange between the membrane surface and the bulk aqueous phase takes as much as about I ms, but could be accelerated by added mobile pH-buffers. Since the accelerating capacity of the latter decreased with the increase in their electric charge, it was concluded that the membrane surface is separated from the bulk aqueous phase by a barrier of electrostatic nature. The barrier could arise owing to the water polarization at the negatively charged membrane surface. The barrier height depends linearly on the charge of penetrating ions; for protons, it has been estimated as about 0.12 eV. While the proton exchange between the surface and the bulk aqueous phase is retarded by the interfacial barrier, the proton diffusion along the membrane, between neighboring enzymes, takes only microseconds. The proton spreading over the membrane is facilitated by the hydrogen-bonded networks at the surface. The membrane-buried layers of these networks can eventually serve as a storage/buffer for protons (proton sponges). As the proton equilibration between the surface and the bulk aqueous phase is slower than the lateral proton diffusion between the "sources" and "sinks", the proton activity at the membrane surface, as sensed by the energy transducing enzymes at steady state, might deviate from that measured in the adjoining water phase. This trait should increase the driving force for ATP synthesis, especially in the case of alkaliphilic bacteria. (c) 2006 Elsevier B.V. All rights reserved.
Stichworte
alkaliphilic bacteria; chemiosmotic coupling; membrane potential; proton transfer; ATP synthesis; nonlocal electrostatics; surface potential; Grotthus mechanism
Erscheinungsjahr
2006
Zeitschriftentitel
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
Band
1757
Ausgabe
8
Seite(n)
913-930
ISSN
0005-2728
Page URI
https://pub.uni-bielefeld.de/record/1597360

Zitieren

Mulkidjanian AY, Heberle J, Cherepanov DA. Protons @ interfaces: Implications for biological energy conversion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS. 2006;1757(8):913-930.
Mulkidjanian, A. Y., Heberle, J., & Cherepanov, D. A. (2006). Protons @ interfaces: Implications for biological energy conversion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1757(8), 913-930. https://doi.org/10.1016/j.bbabio.2006.02.015
Mulkidjanian, Armen Y., Heberle, Joachim, and Cherepanov, Dmitry A. 2006. “Protons @ interfaces: Implications for biological energy conversion”. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1757 (8): 913-930.
Mulkidjanian, A. Y., Heberle, J., and Cherepanov, D. A. (2006). Protons @ interfaces: Implications for biological energy conversion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1757, 913-930.
Mulkidjanian, A.Y., Heberle, J., & Cherepanov, D.A., 2006. Protons @ interfaces: Implications for biological energy conversion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1757(8), p 913-930.
A.Y. Mulkidjanian, J. Heberle, and D.A. Cherepanov, “Protons @ interfaces: Implications for biological energy conversion”, BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, vol. 1757, 2006, pp. 913-930.
Mulkidjanian, A.Y., Heberle, J., Cherepanov, D.A.: Protons @ interfaces: Implications for biological energy conversion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS. 1757, 913-930 (2006).
Mulkidjanian, Armen Y., Heberle, Joachim, and Cherepanov, Dmitry A. “Protons @ interfaces: Implications for biological energy conversion”. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1757.8 (2006): 913-930.

58 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Manganese Oxide Biomineralization Provides Protection against Nitrite Toxicity in a Cell-Density-Dependent Manner.
Zerfaß C, Christie-Oleza JA, Soyer OS., Appl Environ Microbiol 85(2), 2019
PMID: 30413475
Exploring fast proton transfer events associated with lateral proton diffusion on the surface of membranes.
Amdursky N, Lin Y, Aho N, Groenhof G., Proc Natl Acad Sci U S A 116(7), 2019
PMID: 30679274
Competing for the same space: protons and alkali ions at the interface of phospholipid bilayers.
Deplazes E, White J, Murphy C, Cranfield CG, Garcia A., Biophys Rev 11(3), 2019
PMID: 31115866
Redox-Driven Proton Pumps of the Respiratory Chain.
Stuchebrukhov AA., Biophys J 115(5), 2018
PMID: 30119834
Formation of Proton Motive Force Under Low-Aeration Alkaline Conditions in Alkaliphilic Bacteria.
Matsuno T, Goto T, Ogami S, Morimoto H, Yamazaki K, Inoue N, Matsuyama H, Yoshimune K, Yumoto I., Front Microbiol 9(), 2018
PMID: 30333809
A novel method for assessment of local pH in periplasmic space and of cell surface potential in yeast.
Plášek J, Babuka D, Gášková D, Jančíková I, Zahumenský J, Hoefer M., J Bioenerg Biomembr 49(3), 2017
PMID: 28405872
The lateral distance between a proton pump and ATP synthase determines the ATP-synthesis rate.
Sjöholm J, Bergstrand J, Nilsson T, Šachl R, Ballmoos CV, Widengren J, Brzezinski P., Sci Rep 7(1), 2017
PMID: 28592883
pH-sensitive vibrational probe reveals a cytoplasmic protonated cluster in bacteriorhodopsin.
Lorenz-Fonfria VA, Saita M, Lazarova T, Schlesinger R, Heberle J., Proc Natl Acad Sci U S A 114(51), 2017
PMID: 29203649
Coupling Protein Dynamics with Proton Transport in Human Carbonic Anhydrase II.
Taraphder S, Maupin CM, Swanson JM, Voth GA., J Phys Chem B 120(33), 2016
PMID: 27063577
Proton Dynamics at the Membrane Surface.
Gennis RB., Biophys J 110(9), 2016
PMID: 27166799
Protonation Dynamics on Lipid Nanodiscs: Influence of the Membrane Surface Area and External Buffers.
Xu L, Öjemyr LN, Bergstrand J, Brzezinski P, Widengren J., Biophys J 110(9), 2016
PMID: 27166807
Fluorescent Visualization of Cellular Proton Fluxes.
Zhang L, Bellve K, Fogarty K, Kobertz WR., Cell Chem Biol 23(12), 2016
PMID: 27916567
Role of Ions in the Regulation of Light-Harvesting.
Kaňa R, Govindjee., Front Plant Sci 7(), 2016
PMID: 28018387
Biological wires, communication systems, and implications for disease.
Friesen DE, Craddock TJ, Kalra AP, Tuszynski JA., Biosystems 127(), 2015
PMID: 25448891
3D proton transfer augments bio-photocurrent generation.
Rao S, Guo Z, Liang D, Chen D, Li Y, Xiang Y., Adv Mater 27(16), 2015
PMID: 25786358
Nonenzymatic Reactions above Phospholipid Surfaces of Biological Membranes: Reactivity of Phospholipids and Their Oxidation Derivatives.
Solís-Calero C, Ortega-Castro J, Frau J, Muñoz F., Oxid Med Cell Longev 2015(), 2015
PMID: 25977746
Alkaliphilic Bacteria with Impact on Industrial Applications, Concepts of Early Life Forms, and Bioenergetics of ATP Synthesis.
Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA., Front Bioeng Biotechnol 3(), 2015
PMID: 26090360
The alteration of lipid bilayer dynamics by phloretin and 6-ketocholestanol.
Przybylo M, Procek J, Hof M, Langner M., Chem Phys Lipids 178(), 2014
PMID: 24316311
Cardiolipin is dispensable for oxidative phosphorylation and non-fermentative growth of alkaliphilic Bacillus pseudofirmus OF4.
Liu J, Ryabichko S, Bogdanov M, Fackelmayer OJ, Dowhan W, Krulwich TA., J Biol Chem 289(5), 2014
PMID: 24338478
Efflux pumps of Gram-negative bacteria: what they do, how they do it, with what and how to deal with them.
Amaral L, Martins A, Spengler G, Molnar J., Front Pharmacol 4(), 2014
PMID: 24427138
A light-powered bio-capacitor with nanochannel modulation.
Rao S, Lu S, Guo Z, Li Y, Chen D, Xiang Y., Adv Mater 26(33), 2014
PMID: 25043512
Ab initio metadynamics study on hydronium ion dynamics at acid-functionalized interfaces: effect of surface group density.
Vartak S, Golovnev A, Roudgar A, Eikerling M., Phys Chem Chem Phys 16(43), 2014
PMID: 25289546
Mechanism of long-range proton translocation along biological membranes.
Medvedev ES, Stuchebrukhov AA., FEBS Lett 587(4), 2013
PMID: 23268201
Nanoconfinement effects on hydrated excess protons in layered materials.
Muñoz-Santiburcio D, Wittekindt C, Marx D., Nat Commun 4(), 2013
PMID: 23949229
Evolution of cytochrome bc complexes: from membrane-anchored dehydrogenases of ancient bacteria to triggers of apoptosis in vertebrates.
Dibrova DV, Cherepanov DA, Galperin MY, Skulachev VP, Mulkidjanian AY., Biochim Biophys Acta 1827(11-12), 2013
PMID: 23871937
Half a century of molecular bioenergetics.
Junge W., Biochem Soc Trans 41(5), 2013
PMID: 24059510
Energetic and regulatory role of proton potential in chloroplasts.
Tikhonov AN., Biochemistry (Mosc) 77(9), 2012
PMID: 23157255
Role of calcium in the efflux system of Escherichia coli.
Martins A, Machado L, Costa S, Cerca P, Spengler G, Viveiros M, Amaral L., Int J Antimicrob Agents 37(5), 2011
PMID: 21419607
Proton diffusion along biological membranes.
Medvedev ES, Stuchebrukhov AA., J Phys Condens Matter 23(23), 2011
PMID: 21613715
Genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4.
Janto B, Ahmed A, Ito M, Liu J, Hicks DB, Pagni S, Fackelmayer OJ, Smith TA, Earl J, Elbourne LD, Hassan K, Paulsen IT, Kolstø AB, Tourasse NJ, Ehrlich GD, Boissy R, Ivey DM, Li G, Xue Y, Ma Y, Hu FZ, Krulwich TA., Environ Microbiol 13(12), 2011
PMID: 21951522
Effect of the alkaline cations on the stability of the model polynucleotide poly(dG-dC)·poly(dG-dC).
Airoldi M, Gennaro G, Giomini M, Giuliani AM, Giustini M., J Biomol Struct Dyn 29(3), 2011
PMID: 22066543
F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations.
Hicks DB, Liu J, Fujisawa M, Krulwich TA., Biochim Biophys Acta 1797(8), 2010
PMID: 20193659
The obligate alkaliphile Bacillus clarkii K24-1U retains extruded protons at the beginning of respiration.
Yoshimune K, Morimoto H, Hirano Y, Sakamoto J, Matsuyama H, Yumoto I., J Bioenerg Biomembr 42(2), 2010
PMID: 20306123
Functional interactions between membrane-bound transporters and membranes.
Ojemyr LN, Lee HJ, Gennis RB, Brzezinski P., Proc Natl Acad Sci U S A 107(36), 2010
PMID: 20798065
A novel membrane-anchored cytochrome c-550 of alkaliphilic Bacillus clarkii K24-1U: expression, molecular features and properties of redox potential.
Ogami S, Hijikata S, Tsukahara T, Mie Y, Matsuno T, Morita N, Hara I, Yamazaki K, Inoue N, Yokota A, Hoshino T, Yoshimune K, Yumoto I., Extremophiles 13(3), 2009
PMID: 19266156
Co-evolution of primordial membranes and membrane proteins.
Mulkidjanian AY, Galperin MY, Koonin EV., Trends Biochem Sci 34(4), 2009
PMID: 19303305
Recent advances in structure-functional studies of mitochondrial factor B.
Belogrudov GI., J Bioenerg Biomembr 41(2), 2009
PMID: 19377834
pH Modulation of efflux pump activity of multi-drug resistant Escherichia coli: protection during its passage and eventual colonization of the colon.
Martins A, Spengler G, Rodrigues L, Viveiros M, Ramos J, Martins M, Couto I, Fanning S, Pagès JM, Bolla JM, Molnar J, Amaral L., PLoS One 4(8), 2009
PMID: 19684858
An AcrAB-mediated multidrug-resistant phenotype is maintained following restoration of wild-type activities by efflux pump genes and their regulators.
Martins A, Iversen C, Rodrigues L, Spengler G, Ramos J, Kern WV, Couto I, Viveiros M, Fanning S, Pages JM, Amaral L., Int J Antimicrob Agents 34(6), 2009
PMID: 19734019
Dielectric relaxation dynamics of water in model membranes probed by terahertz spectroscopy.
Tielrooij KJ, Paparo D, Piatkowski L, Bakker HJ, Bonn M., Biophys J 97(9), 2009
PMID: 19883591
The past and present of sodium energetics: may the sodium-motive force be with you.
Mulkidjanian AY, Dibrov P, Galperin MY., Biochim Biophys Acta 1777(7-8), 2008
PMID: 18485887
Probing biological interfaces by tracing proton passage across them.
Mulkidjanian AY, Cherepanov DA., Photochem Photobiol Sci 5(6), 2006
PMID: 16761086
Localized proton microcircuits at the biological membrane-water interface.
Brändén M, Sandén T, Brzezinski P, Widengren J., Proc Natl Acad Sci U S A 103(52), 2006
PMID: 17172452

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16624250
PubMed | Europe PMC

Suchen in

Google Scholar