Light-driven water splitting for (bio-)hydrogen production: photosystern 2 as the central part of a bioelectrochemical device

Badura A, Esper B, Ataka K, Grunwald C, Woell C, Kuhlmann J, Heberle J, Roegner M (2006)
PHOTOCHEMISTRY AND PHOTOBIOLOGY 82(5): 1385-1390.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Badura, Adrian; Esper, Berndt; Ataka, Kenichi; Grunwald, Christian; Woell, Christof; Kuhlmann, Juergen; Heberle, Joachim; Roegner, Matthias
Abstract / Bemerkung
To establish a semiartificial device for (bio-)hydrogen production utilizing photosynthetic water oxidation, we report on the immobilization of a Photosystem 2 on electrode surfaces. For this purpose, an isolated Photosystem 2 with a genetically introduced His tag from the cyanobacterium Thermosynechococcus elongatus was attached onto gold electrodes modified with thiolates bearing terminal Ni(II)-nitrilotriacetic acid groups. Surface enhanced infrared absorption spectroscopy showed the binding kinetics of Photosystem 2, whereas surface plasmon resonance measurements allowed the amount of protein adsorbed to be quantified. On the basis of these data, the 2 surface coverage was calculated to be 0.29 pmol protein cm(-2), which is in agreement with the formation of a monomolecular film on the electrode surface. Upon illumination, the generation of a photocurrent was observed with current densities of up to 14 mu A cm(-2). This photocurrent is clearly dependent on light quality showing an action spectrum similar to an isolated Photosystem 2. The achieved current densities are equivalent to the highest reported oxygen evolution activities in solution under comparable conditions.
Erscheinungsjahr
2006
Zeitschriftentitel
PHOTOCHEMISTRY AND PHOTOBIOLOGY
Band
82
Ausgabe
5
Seite(n)
1385-1390
ISSN
0031-8655
Page URI
https://pub.uni-bielefeld.de/record/1597299

Zitieren

Badura A, Esper B, Ataka K, et al. Light-driven water splitting for (bio-)hydrogen production: photosystern 2 as the central part of a bioelectrochemical device. PHOTOCHEMISTRY AND PHOTOBIOLOGY. 2006;82(5):1385-1390.
Badura, A., Esper, B., Ataka, K., Grunwald, C., Woell, C., Kuhlmann, J., Heberle, J., et al. (2006). Light-driven water splitting for (bio-)hydrogen production: photosystern 2 as the central part of a bioelectrochemical device. PHOTOCHEMISTRY AND PHOTOBIOLOGY, 82(5), 1385-1390. https://doi.org/10.1562/2006-07-14-RC-969
Badura, Adrian, Esper, Berndt, Ataka, Kenichi, Grunwald, Christian, Woell, Christof, Kuhlmann, Juergen, Heberle, Joachim, and Roegner, Matthias. 2006. “Light-driven water splitting for (bio-)hydrogen production: photosystern 2 as the central part of a bioelectrochemical device”. PHOTOCHEMISTRY AND PHOTOBIOLOGY 82 (5): 1385-1390.
Badura, A., Esper, B., Ataka, K., Grunwald, C., Woell, C., Kuhlmann, J., Heberle, J., and Roegner, M. (2006). Light-driven water splitting for (bio-)hydrogen production: photosystern 2 as the central part of a bioelectrochemical device. PHOTOCHEMISTRY AND PHOTOBIOLOGY 82, 1385-1390.
Badura, A., et al., 2006. Light-driven water splitting for (bio-)hydrogen production: photosystern 2 as the central part of a bioelectrochemical device. PHOTOCHEMISTRY AND PHOTOBIOLOGY, 82(5), p 1385-1390.
A. Badura, et al., “Light-driven water splitting for (bio-)hydrogen production: photosystern 2 as the central part of a bioelectrochemical device”, PHOTOCHEMISTRY AND PHOTOBIOLOGY, vol. 82, 2006, pp. 1385-1390.
Badura, A., Esper, B., Ataka, K., Grunwald, C., Woell, C., Kuhlmann, J., Heberle, J., Roegner, M.: Light-driven water splitting for (bio-)hydrogen production: photosystern 2 as the central part of a bioelectrochemical device. PHOTOCHEMISTRY AND PHOTOBIOLOGY. 82, 1385-1390 (2006).
Badura, Adrian, Esper, Berndt, Ataka, Kenichi, Grunwald, Christian, Woell, Christof, Kuhlmann, Juergen, Heberle, Joachim, and Roegner, Matthias. “Light-driven water splitting for (bio-)hydrogen production: photosystern 2 as the central part of a bioelectrochemical device”. PHOTOCHEMISTRY AND PHOTOBIOLOGY 82.5 (2006): 1385-1390.

40 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Structure-Activity Relationships of Hierarchical Three-Dimensional Electrodes with Photosystem II for Semiartificial Photosynthesis.
Fang X, Sokol KP, Heidary N, Kandiel TA, Zhang JZ, Reisner E., Nano Lett 19(3), 2019
PMID: 30689393
Spectrally selective fluorescence imaging of Chlorobaculum tepidum reaction centers conjugated to chelator-modified silver nanowires.
Kowalska D, Szalkowski M, Ashraf K, Grzelak J, Lokstein H, Niedziolka-Jonsson J, Cogdell R, Mackowski S., Photosynth Res 135(1-3), 2018
PMID: 29090426
Time-resolved infrared spectroscopy in the study of photosynthetic systems.
Mezzetti A, Leibl W., Photosynth Res 131(2), 2017
PMID: 27678250
Fluorescence property of photosystem II protein complexes bound to a gold nanoparticle.
Tahara K, Mohamed A, Kawahara K, Nagao R, Kato Y, Fukumura H, Shibata Y, Noguchi T., Faraday Discuss 198(), 2017
PMID: 28272621
Detection of Singlet Oxygen Formation inside Photoactive Biohybrid Composite Material.
Hajdu K, Ur Rehman A, Vass I, Nagy L., Materials (Basel) 11(1), 2017
PMID: 29278357
Simultaneous measurements of photocurrents and H2O2 evolution from solvent exposed photosystem 2 complexes.
Vöpel T, Ning Saw E, Hartmann V, Williams R, Müller F, Schuhmann W, Plumeré N, Nowaczyk M, Ebbinghaus S, Rögner M., Biointerphases 11(1), 2016
PMID: 26700470
Directed assembly of the thylakoid membrane on nanostructured TiO2 for a photo-electrochemical cell.
Kavadiya S, Chadha TS, Liu H, Shah VB, Blankenship RE, Biswas P., Nanoscale 8(4), 2016
PMID: 26731449
Efficient Photoelectrochemical Energy Conversion using Spinach Photosystem II (PSII) in Lipid Multilayer Films.
Zhang Y, Magdaong NM, Shen M, Frank HA, Rusling JF., ChemistryOpen 4(2), 2015
PMID: 25969807
Photocurrent generation from thylakoid membranes on osmium-redox-polymer-modified electrodes.
Hamidi H, Hasan K, Emek SC, Dilgin Y, Åkerlund HE, Albertsson PÅ, Leech D, Gorton L., ChemSusChem 8(6), 2015
PMID: 25703722
Photosynthetic production of enantioselective biocatalysts.
Bartsch M, Gassmeyer SK, Köninger K, Igarashi K, Liauw P, Dyczmons-Nowaczyk N, Miyamoto K, Nowaczyk MM, Kourist R., Microb Cell Fact 14(), 2015
PMID: 25889799
Photosynthetic machineries in nano-systems.
Nagy L, Magyar M, Szabó T, Hajdu K, Giotta L, Dorogi M, Milano F., Curr Protein Pept Sci 15(4), 2014
PMID: 24678673
A nano-sized manganese oxide in a protein matrix as a natural water-oxidizing site.
Najafpour MM, Ghobadi MZ, Haghighi B, Tomo T, Carpentier R, Shen JR, Allakhverdiev SI., Plant Physiol Biochem 81(), 2014
PMID: 24560883
Analysis of the solution structure of Thermosynechococcus elongatus photosystem I in n-dodecyl-β-D-maltoside using small-angle neutron scattering and molecular dynamics simulation.
Le RK, Harris BJ, Iwuchukwu IJ, Bruce BD, Cheng X, Qian S, Heller WT, O'Neill H, Frymier PD., Arch Biochem Biophys 550-551(), 2014
PMID: 24769336
Redox hydrogels with adjusted redox potential for improved efficiency in Z-scheme inspired biophotovoltaic cells.
Hartmann V, Kothe T, Pöller S, El-Mohsnawy E, Nowaczyk MM, Plumeré N, Schuhmann W, Rögner M., Phys Chem Chem Phys 16(24), 2014
PMID: 24647437
Photosynthesis at the forefront of a sustainable life.
Janssen PJ, Lambreva MD, Plumeré N, Bartolucci C, Antonacci A, Buonasera K, Frese RN, Scognamiglio V, Rea G., Front Chem 2(), 2014
PMID: 24971306
Protein film photoelectrochemistry of the water oxidation enzyme photosystem II.
Kato M, Zhang JZ, Paul N, Reisner E., Chem Soc Rev 43(18), 2014
PMID: 24668258
Immobilization of proteins in their physiological active state at functionalized thiol monolayers on ATR-germanium crystals.
Schartner J, Gavriljuk K, Nabers A, Weide P, Muhler M, Gerwert K, Kötting C., Chembiochem 15(17), 2014
PMID: 25256748
Facile assembly of an efficient CoO(x) water oxidation electrocatalyst from Co-containing polyoxotitanate nanocages.
Lai YH, Lin CY, Lv Y, King TC, Steiner A, Muresan NM, Gan L, Wright DS, Reisner E., Chem Commun (Camb) 49(39), 2013
PMID: 22918295
Chlorosome antenna complexes from green photosynthetic bacteria.
Orf GS, Blankenship RE., Photosynth Res 116(2-3), 2013
PMID: 23761131
A reaction center-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga, Cyanidioschyzon merolae.
Krupnik T, Kotabová E, van Bezouwen LS, Mazur R, Garstka M, Nixon PJ, Barber J, Kaňa R, Boekema EJ, Kargul J., J Biol Chem 288(32), 2013
PMID: 23775073
Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins.
Ataka K, Stripp ST, Heberle J., Biochim Biophys Acta 1828(10), 2013
PMID: 23816441
Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation.
Kato M, Cardona T, Rutherford AW, Reisner E., J Am Chem Soc 135(29), 2013
PMID: 23829513
Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications.
Kothe T, Plumeré N, Badura A, Nowaczyk MM, Guschin DA, Rögner M, Schuhmann W., Angew Chem Int Ed Engl 52(52), 2013
PMID: 24323676
Integrated photosystem II-based photo-bioelectrochemical cells.
Yehezkeli O, Tel-Vered R, Wasserman J, Trifonov A, Michaeli D, Nechushtai R, Willner I., Nat Commun 3(), 2012
PMID: 22415833
Near-IR absorbing solar cell sensitized with bacterial photosynthetic membranes.
Woronowicz K, Ahmed S, Biradar AA, Biradar AV, Birnie DP, Asefa T, Niederman RA., Photochem Photobiol 88(6), 2012
PMID: 22708611
Characterization and deposition of various light-harvesting antenna complexes by electrospray atomization.
Shah VB, Orf GS, Reisch S, Harrington LB, Prado M, Blankenship RE, Biswas P., Anal Bioanal Chem 404(8), 2012
PMID: 22983169
In vitro hydrogen production--using energy from the sun.
Krassen H, Ott S, Heberle J., Phys Chem Chem Phys 13(1), 2011
PMID: 21103567
Artificial photosynthesis: from molecular catalysts for light-driven water splitting to photoelectrochemical cells.
Andreiadis ES, Chavarot-Kerlidou M, Fontecave M, Artero V., Photochem Photobiol 87(5), 2011
PMID: 21740444
Photocatalytic hydrogen evolution under highly basic conditions by using Ru nanoparticles and 2-phenyl-4-(1-naphthyl)quinolinium ion.
Yamada Y, Miyahigashi T, Kotani H, Ohkubo K, Fukuzumi S., J Am Chem Soc 133(40), 2011
PMID: 21875112
Requirements for construction of a functional hybrid complex of photosystem I and [NiFe]-hydrogenase.
Schwarze A, Kopczak MJ, Rögner M, Lenz O., Appl Environ Microbiol 76(8), 2010
PMID: 20154103
Photoelectron generation by photosystem II core complexes tethered to gold surfaces.
Vittadello M, Gorbunov MY, Mastrogiovanni DT, Wielunski LS, Garfunkel EL, Guerrero F, Kirilovsky D, Sugiura M, Rutherford AW, Safari A, Falkowski PG., ChemSusChem 3(4), 2010
PMID: 20209512
Monitoring catalysis of the membrane-bound hydrogenase from Ralstonia eutropha H16 by surface-enhanced IR absorption spectroscopy.
Wisitruangsakul N, Lenz O, Ludwig M, Friedrich B, Lendzian F, Hildebrandt P, Zebger I., Angew Chem Int Ed Engl 48(3), 2009
PMID: 19067445
How algae produce hydrogen--news from the photosynthetic hydrogenase.
Stripp ST, Happe T., Dalton Trans (45), 2009
PMID: 19904421
Survey of the year 2006 commercial optical biosensor literature.
Rich RL, Myszka DG., J Mol Recognit 20(5), 2007
PMID: 18074396

34 References

Daten bereitgestellt von Europe PubMed Central.

Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies.
Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B., Photochem. Photobiol. Sci. 4(12), 2005
PMID: 16307108
Photoelectrochemical cells.
Gratzel M., Nature 414(6861), 2001
PMID: 11713540

Haehnel, J. Electroanal. Chem. 104(), 1979
Approaches for biological and biomimetic energy conversion.
LaVan DA, Cha JN., Proc. Natl. Acad. Sci. U.S.A. 103(14), 2006
PMID: 16567648
Light work with water.
Lewis NS., Nature 414(6864), 2001
PMID: 11740538

Wenk, Int. J. Hydrogen Energy 27(), 2002
Architecture of the photosynthetic oxygen-evolving center.
Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S., Science 303(5665), 2004
PMID: 14764885
Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution.
Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N., Nature 411(6840), 2001
PMID: 11418848
Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center.
Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC., Structure 7(1), 1999
PMID: 10368269
X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution.
Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC., Science 282(5395), 1998
PMID: 9836629
Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution.
Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P., Nature 409(6821), 2001
PMID: 11217865

Lamle, Dalton Trans. 21(), 2003
Enzyme electrokinetics: hydrogen evolution and oxidation by Allochromatium vinosum [NiFe]-hydrogenase.
Leger C, Jones AK, Roseboom W, Albracht SP, Armstrong FA., Biochemistry 41(52), 2002
PMID: 12501202
A hydrogen biosensor made of clay, poly(butylviologen), and hydrogenase sandwiched on a glass carbon electrode.
Qian DJ, Nakamura C, Wenk SO, Ishikawa H, Zorin N, Miyake J., Biosens Bioelectron 17(9), 2002
PMID: 12191927
Oriented immobilization of Desulfovibrio gigas hydrogenase onto carbon electrodes by covalent bonds for nonmediated oxidation of H2.
Rudiger O, Abad JM, Hatchikian EC, Fernandez VM, De Lacey AL., J. Am. Chem. Soc. 127(46), 2005
PMID: 16287271
Better than platinum? Fuel cells energized by enzymes.
Tye JW, Hall MB, Darensbourg MY., Proc. Natl. Acad. Sci. U.S.A. 102(47), 2005
PMID: 16286638

Das, Nano Lett. 4(), 2004
Nanoscale photosynthesis: photocatalytic production of hydrogen by platinized photosystem I reaction centers.
Millsaps JF, Bruce BD, Lee JW, Greenbaum E., Photochem. Photobiol. 73(6), 2001
PMID: 11421068
Electrocatalytic investigation of light-induced electron transfer between cytochrome c6 and photosystem I.
Proux-Delrouyre V, Demaille C, Leibl W, Setif P, Bottin H, Bourdillon C., J. Am. Chem. Soc. 125(45), 2003
PMID: 14599207
Monolayers of photosystem II on gold electrodes with enhanced sensor response--effect of porosity and protein layer arrangement.
Maly J, Krejci J, Ilie M, Jakubka L, Masojidek J, Pilloton R, Sameh K, Steffan P, Stryhal Z, Sugiura M., Anal Bioanal Chem 381(8), 2005
PMID: 15821904
A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance.
Sigal GB, Bamdad C, Barberis A, Strominger J, Whitesides GM., Anal. Chem. 68(3), 1996
PMID: 8712358
High-affinity chelator thiols for switchable and oriented immobilization of histidine-tagged proteins: a generic platform for protein chip technologies.
Tinazli A, Tang J, Valiokas R, Picuric S, Lata S, Piehler J, Liedberg B, Tampe R., Chemistry 11(18), 2005
PMID: 15991207

Lee, J. Phys. Chem. B 108(), 2004
Integration of Layered Redox Proteins and Conductive Supports for Bioelectronic Applications.
Willner I I, Katz E., Angew. Chem. Int. Ed. Engl. 39(7), 2000
PMID: 10767010
The antenna system of photosystem II from Thermosynechococcus elongatus at 3.2 A resolution.
Loll B, Kern J, Zouni A, Saenger W, Biesiadka J, Irrgang KD., Photosyn. Res. 86(1-2), 2005
PMID: 16172937
Photosystem II: the engine of life.
Barber J., Q. Rev. Biophys. 36(1), 2003
PMID: 12643043
Anisotropic orientation of horseradish peroxidase by reconstitution on a thiol-modified gold electrode.
Zimmermann H, Lindgren A, Schuhmann W, Gorton L., Chemistry 6(4), 2000
PMID: 10807170

Prodohl, 2004
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16898857
PubMed | Europe PMC

Suchen in

Google Scholar