GC-MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules
Barsch A, Carvalho HG, Cullimore JV, Niehaus K (2006)
Journal of Biotechnology 127(1): 79-83.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Barsch, Aiko;
Carvalho, Helena G.;
Cullimore, Julie V.;
Niehaus, KarstenUniBi
Einrichtung
Abstract / Bemerkung
In symbiotic interaction with legume plants, bacteria termed Rhizobia can fix massive amounts of atmospheric nitrogen which is primarily provided in the form of ammonium to the host plants. Therefore, legume root nodules that house the symbiotic bacteria are ideally suited to study the process of primary ammonium assimilation. Here, we present a GC-MS based metabolite profiling analysis of Medicago truncatula root nodules (induced by the bacterium Sinorhizobium meliloti) before and after inhibition of glutamine synthetase (GS) by the chemical herbicide phosphinotricine. The primary role of GS in ammonium assimilation was revealed by drastically reduced levels of glutamine in phosphinotricine treated root nodules. In comparison to previous results of increased asparagine synthetase transcript and protein abundances in GS inhibited nodules the metabolic data revealed that decreased amounts of aspartate might preclude taking advantage of this elevated enzymatic activity. A potential role of glutamate dehydrogenase in ammonium assimilation was metabolically indicated 24 and 48 h after GS inhibition. Therefore, nodule ammonium assimilation might in principle involve three interdependent metabolic pathways which are adjusted to control basic nitrogen metabolism. (c) 2006 Elsevier B.V. All rights reserved.
Stichworte
phosphinotricine;
metabolite profiling;
Medicago truncatula;
glutamine synthetase;
GC-MS
Erscheinungsjahr
2006
Zeitschriftentitel
Journal of Biotechnology
Band
127
Ausgabe
1
Seite(n)
79-83
ISSN
0168-1656
Page URI
https://pub.uni-bielefeld.de/record/1596781
Zitieren
Barsch A, Carvalho HG, Cullimore JV, Niehaus K. GC-MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules. Journal of Biotechnology. 2006;127(1):79-83.
Barsch, A., Carvalho, H. G., Cullimore, J. V., & Niehaus, K. (2006). GC-MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules. Journal of Biotechnology, 127(1), 79-83. https://doi.org/10.1016/j.jbiotec.2006.06.007
Barsch, Aiko, Carvalho, Helena G., Cullimore, Julie V., and Niehaus, Karsten. 2006. “GC-MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules”. Journal of Biotechnology 127 (1): 79-83.
Barsch, A., Carvalho, H. G., Cullimore, J. V., and Niehaus, K. (2006). GC-MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules. Journal of Biotechnology 127, 79-83.
Barsch, A., et al., 2006. GC-MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules. Journal of Biotechnology, 127(1), p 79-83.
A. Barsch, et al., “GC-MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules”, Journal of Biotechnology, vol. 127, 2006, pp. 79-83.
Barsch, A., Carvalho, H.G., Cullimore, J.V., Niehaus, K.: GC-MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules. Journal of Biotechnology. 127, 79-83 (2006).
Barsch, Aiko, Carvalho, Helena G., Cullimore, Julie V., and Niehaus, Karsten. “GC-MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules”. Journal of Biotechnology 127.1 (2006): 79-83.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
13 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Laser-ablation electrospray ionization mass spectrometry with ion mobility separation reveals metabolites in the symbiotic interactions of soybean roots and rhizobia.
Stopka SA, Agtuca BJ, Koppenaal DW, Paša-Tolić L, Stacey G, Vertes A, Anderton CR., Plant J 91(2), 2017
PMID: 28394446
Stopka SA, Agtuca BJ, Koppenaal DW, Paša-Tolić L, Stacey G, Vertes A, Anderton CR., Plant J 91(2), 2017
PMID: 28394446
Expression Analysis of PIN Genes in Root Tips and Nodules of Medicago truncatula.
Sańko-Sawczenko I, Łotocka B, Czarnocka W., Int J Mol Sci 17(8), 2016
PMID: 27463709
Sańko-Sawczenko I, Łotocka B, Czarnocka W., Int J Mol Sci 17(8), 2016
PMID: 27463709
Molecular and physiological stages of priming: how plants prepare for environmental challenges.
Gamir J, Sánchez-Bel P, Flors V., Plant Cell Rep 33(12), 2014
PMID: 25113544
Gamir J, Sánchez-Bel P, Flors V., Plant Cell Rep 33(12), 2014
PMID: 25113544
A nitrogen-dependent switch in the high affinity ammonium transport in Medicago truncatula.
Straub D, Ludewig U, Neuhäuser B., Plant Mol Biol 86(4-5), 2014
PMID: 25164101
Straub D, Ludewig U, Neuhäuser B., Plant Mol Biol 86(4-5), 2014
PMID: 25164101
Cessation of photosynthesis in Lotus japonicus leaves leads to reprogramming of nodule metabolism.
Tsikou D, Kalloniati C, Fotelli MN, Nikolopoulos D, Katinakis P, Udvardi MK, Rennenberg H, Flemetakis E., J Exp Bot 64(5), 2013
PMID: 23404899
Tsikou D, Kalloniati C, Fotelli MN, Nikolopoulos D, Katinakis P, Udvardi MK, Rennenberg H, Flemetakis E., J Exp Bot 64(5), 2013
PMID: 23404899
MALDI mass spectrometry-assisted molecular imaging of metabolites during nitrogen fixation in the Medicago truncatula-Sinorhizobium meliloti symbiosis.
Ye H, Gemperline E, Venkateshwaran M, Chen R, Delaux PM, Howes-Podoll M, Ané JM, Li L., Plant J 75(1), 2013
PMID: 23551619
Ye H, Gemperline E, Venkateshwaran M, Chen R, Delaux PM, Howes-Podoll M, Ané JM, Li L., Plant J 75(1), 2013
PMID: 23551619
Inhibition of glutamine synthetase by phosphinothricin leads to transcriptome reprograming in root nodules of Medicago truncatula.
Seabra AR, Pereira PA, Becker JD, Carvalho HG., Mol Plant Microbe Interact 25(7), 2012
PMID: 22414438
Seabra AR, Pereira PA, Becker JD, Carvalho HG., Mol Plant Microbe Interact 25(7), 2012
PMID: 22414438
Identification of uricase as a potential target of plant thioredoxin: Implication in the regulation of nodule development.
Du H, Kim S, Nam KH, Lee MS, Son O, Lee SH, Cheon CI., Biochem Biophys Res Commun 397(1), 2010
PMID: 20470756
Du H, Kim S, Nam KH, Lee MS, Son O, Lee SH, Cheon CI., Biochem Biophys Res Commun 397(1), 2010
PMID: 20470756
Temporally resolved GC-MS-based metabolic profiling of herbicide treated plants treated reveals that changes in polar primary metabolites alone can distinguish herbicides of differing mode of action.
Trenkamp S, Eckes P, Busch M, Fernie AR., Metabolomics 5(3), 2009
PMID: 19718268
Trenkamp S, Eckes P, Busch M, Fernie AR., Metabolomics 5(3), 2009
PMID: 19718268
The pleiotropic effects of the bar gene and glufosinate on the Arabidopsis transcriptome.
Abdeen A, Miki B., Plant Biotechnol J 7(3), 2009
PMID: 19222808
Abdeen A, Miki B., Plant Biotechnol J 7(3), 2009
PMID: 19222808
Metabolic profiling as a tool for understanding defense response of Taxus cuspidata cells to shear stress.
Han PP, Yuan YJ., Biotechnol Prog 25(5), 2009
PMID: 19606465
Han PP, Yuan YJ., Biotechnol Prog 25(5), 2009
PMID: 19606465
Nutrient sharing between symbionts.
White J, Prell J, James EK, Poole P., Plant Physiol 144(2), 2007
PMID: 17556524
White J, Prell J, James EK, Poole P., Plant Physiol 144(2), 2007
PMID: 17556524
How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model.
Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC., Nat Rev Microbiol 5(8), 2007
PMID: 17632573
Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC., Nat Rev Microbiol 5(8), 2007
PMID: 17632573
15 References
Daten bereitgestellt von Europe PubMed Central.
Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry.
Barsch A, Patschkowski T, Niehaus K., Funct. Integr. Genomics 4(4), 2004
PMID: 15372312
Barsch A, Patschkowski T, Niehaus K., Funct. Integr. Genomics 4(4), 2004
PMID: 15372312
Nodule-specific modulation of glutamine synthetase in transgenic Medicago truncatula leads to inverse alterations in asparagine synthetase expression.
Carvalho HG, Lopes-Cardoso IA, Lima LM, Melo PM, Cullimore JV., Plant Physiol. 133(1), 2003
PMID: 12970490
Carvalho HG, Lopes-Cardoso IA, Lima LM, Melo PM, Cullimore JV., Plant Physiol. 133(1), 2003
PMID: 12970490
Engineering herbicide resistance in plants by expression of a detoxifying enzyme.
Block MD, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Movva NR, Thompson C, Montagu MV, Leemans J., EMBO J. 6(9), 1987
PMID: 16453789
Block MD, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Movva NR, Thompson C, Montagu MV, Leemans J., EMBO J. 6(9), 1987
PMID: 16453789
The Metabolites of the Herbicide L-Phosphinothricin (Glufosinate) (Identification, Stability, and Mobility in Transgenic, Herbicide-Resistant, and Untransformed Plants).
Droge-Laser W, Siemeling U, Puhler A, Broer I., Plant Physiol. 105(1), 1994
PMID: 12232195
Droge-Laser W, Siemeling U, Puhler A, Broer I., Plant Physiol. 105(1), 1994
PMID: 12232195
Transgenic plants containing the phosphinothricin-N-acetyltransferase gene metabolize the herbicide L-phosphinothricin (glufosinate) differently from untransformed plants.
Droge W, Broer I, Puhler A., Planta 187(1), 1992
PMID: 24177979
Droge W, Broer I, Puhler A., Planta 187(1), 1992
PMID: 24177979
Sucrose synthase in legume nodules is essential for nitrogen fixation
Gordon AJ, Minchin FR, James CL, Komina O., Plant Physiol. 120(3), 1999
PMID: 10398723
Gordon AJ, Minchin FR, James CL, Komina O., Plant Physiol. 120(3), 1999
PMID: 10398723
Nodule formation and function
Gordon, 2001
Gordon, 2001
Does lowering glutamine synthetase activity in nodules modify nitrogen metabolism and growth of Lotus japonicus?
Harrison J, Pou de Crescenzo MA, Sene O, Hirel B., Plant Physiol. 133(1), 2003
PMID: 12970491
Harrison J, Pou de Crescenzo MA, Sene O, Hirel B., Plant Physiol. 133(1), 2003
PMID: 12970491
Ammonia assimilation
Hirel, 2001
Hirel, 2001
Carbon and nitrogen metabolism in Rhizobia
Kahn, 1998
Kahn, 1998
Current challenges and developments in GC-MS based metabolite profiling technology.
Kopka J., J. Biotechnol. 124(1), 2006
PMID: 16434119
Kopka J., J. Biotechnol. 124(1), 2006
PMID: 16434119
The action of the 2-amino-4-(methylphosphinyl)-butanoic acid (phosphinothricin) and its 2-0x0-derivative on the metabolism of cyanobacteria and higher plants
Lea, Phytochemistry 23(), 1984
Lea, Phytochemistry 23(), 1984
Key role of bacterial NH(4)(+) metabolism in Rhizobium-plant symbiosis.
Patriarca EJ, Tate R, Iaccarino M., Microbiol. Mol. Biol. Rev. 66(2), 2002
PMID: 12040124
Patriarca EJ, Tate R, Iaccarino M., Microbiol. Mol. Biol. Rev. 66(2), 2002
PMID: 12040124
Nitrogen assimilation in alfalfa: isolation and characterization of an asparagine synthetase gene showing enhanced expression in root nodules and dark-adapted leaves.
Shi L, Twary SN, Yoshioka H, Gregerson RG, Miller SS, Samac DA, Gantt JS, Unkefer PJ, Vance CP., Plant Cell 9(8), 1997
PMID: 9286111
Shi L, Twary SN, Yoshioka H, Gregerson RG, Miller SS, Samac DA, Gantt JS, Unkefer PJ, Vance CP., Plant Cell 9(8), 1997
PMID: 9286111
Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tu494 and its expression in Nicotiana tabacum.
Wohlleben W, Arnold W, Broer I, Hillemann D, Strauch E, Puhler A., Gene 70(1), 1988
PMID: 3240868
Wohlleben W, Arnold W, Broer I, Hillemann D, Strauch E, Puhler A., Gene 70(1), 1988
PMID: 3240868
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 16870293
PubMed | Europe PMC
Suchen in