The synthesis of cryptophycins

Eissler S, Stoncius A, Nahrwold M, Sewald N (2006)
SYNTHESIS-STUTTGART 2006(22): 3747-3789.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
; ; ;
Abstract / Bemerkung
Nature provides a huge reservoir of highly diverse chemical compounds with interesting biological properties. Secondary metabolites continue to represent promising candidates for therapeutic applications and drugs are very often based on natural products. Frequently, the total synthesis of such compounds is a real challenge, and this also drives the development of new synthetic methodology. This review article focuses on the biochemistry and chemistry of cryptophycins, a class of 16-membered macrocyclic depsipeptides. The first representative was isolated more than 15 years ago from cyanobacteria. With respect to structure, the class can be subdivided into two structural categories, containing either an epoxide or an alkene moiety. The bioactivity of cryptophycins is based on their ability to interact with tubulin. They display considerable tumour-selective cytotoxicity both against multidrug-resistant tumour cell lines and solid tumours implanted in mice. Consequently, cryptophycin derivatives are considered as potential antitumour drugs. Despite the fact that the cryptophycins were discovered only recently, several different synthetic approaches have already been published. In addition to information on the synthesis of the subunits A-D, strategies for both their assembly and the macrocyclisation are compiled in this review. 1 Structural and Biological Features of Cryptophycins 1.1 The Cryptophycins: A Short History 1.2 Structural Features 1.3 Tubulin as a Drug Target 1.4 Biological Activity of Cryptophycins 1.5 Structure-Activity Relationship 2 Synthesis of the Building Blocks 2.1 Syntheses of Unit A with Two Stereogenic Centres 2.2 Syntheses of Unit A with Four Stereogenic Centres 2.3 Units B, C, and D 3 Coupling of Units and Cyclisation 3.1 Cyclisation between Units C and B 3.2 Cyclisation between Units A and B 3.3 Homer-Wadsworth-Emmons Reaction and Ring-Closing Metathesis 3.4 Other Cyclisation Methods 4 Epoxidation 4.1 m-Chloroperoxybenzoic Acid 4.2 Dimethyldioxirane 4.3 Diol-Epoxide Conversion 4.4 Halohydrins 5 Reactions of Cryptophycins 6 Conclusion and Outlook.
Stichworte
drugs; natural products; total synthesis; medicinal chemistry; peptides
Erscheinungsjahr
2006
Zeitschriftentitel
SYNTHESIS-STUTTGART
Band
2006
Ausgabe
22
Seite(n)
3747-3789
ISSN
0039-7881
eISSN
1437-210X
Page URI
https://pub.uni-bielefeld.de/record/1596736

Zitieren

Eissler S, Stoncius A, Nahrwold M, Sewald N. The synthesis of cryptophycins. SYNTHESIS-STUTTGART. 2006;2006(22):3747-3789.
Eissler, S., Stoncius, A., Nahrwold, M., & Sewald, N. (2006). The synthesis of cryptophycins. SYNTHESIS-STUTTGART, 2006(22), 3747-3789. doi:10.1055/s-2006-950332
Eissler, S., Stoncius, A., Nahrwold, M., and Sewald, N. (2006). The synthesis of cryptophycins. SYNTHESIS-STUTTGART 2006, 3747-3789.
Eissler, S., et al., 2006. The synthesis of cryptophycins. SYNTHESIS-STUTTGART, 2006(22), p 3747-3789.
S. Eissler, et al., “The synthesis of cryptophycins”, SYNTHESIS-STUTTGART, vol. 2006, 2006, pp. 3747-3789.
Eissler, S., Stoncius, A., Nahrwold, M., Sewald, N.: The synthesis of cryptophycins. SYNTHESIS-STUTTGART. 2006, 3747-3789 (2006).
Eissler, Stefan, Stoncius, Arvydas, Nahrwold, Markus, and Sewald, Norbert. “The synthesis of cryptophycins”. SYNTHESIS-STUTTGART 2006.22 (2006): 3747-3789.