Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum

Brinkrolf K, Brune I, Tauch A (2006)
GENETICS AND MOLECULAR RESEARCH 5(4): 773-789.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Corynebacterium glutamicum is a gram-positive soil microorganism able to utilize a large variety of aromatic compounds as the sole carbon source. The corresponding catabolic routes are associated with multiple ring-fission dioxygenases and among other channeling reactions, include the gentisate pathway, the protocatechuate and catechol branches of the beta-ketoadipate pathway and two potential hydroxyquinol pathways. Genes encoding the enzymatic machinery for the bioconversion of aromatic compounds are organized in several clusters in the C. glutamicum genome. Expression of the gene clusters is under specific transcriptional control, apparently including eight DNA-binding proteins belonging to the AraC, IclR, LuxR, PadR, and TetR families of transcriptional regulators. Expression of the gentisate pathway involved in the utilization of 3-hydroxybenzoate and gentisate is positively regulated by an IclR-type activator. The metabolic channeling of ferulate, vanillin and vanillate into the protocatechuate branch of the beta-ketoadipate pathway is controlled by a PadR-like repressor. Regulatory proteins of the IclR and LuxR families participate in transcriptional regulation of the branches of the beta-ketoadipate pathway that are involved in the utilization of benzoate, 4-hydroxybenzoate and protocatechuate. The channeling of phenol into this pathway may be under positive transcriptional control by an AraC-type activator. One of the potential hydroxyquinol pathways of C. glutamicum is apparently repressed by a TetR-type regulator. This global analysis revealed that transcriptional regulation of aromatic compound utilization is mainly controlled by single regulatory proteins sensing the presence of aromatic compounds, thus representing single input motifs within the transcriptional regulatory network of C. glutamicum.
Stichworte
transcriptional regulation; hydroxyquinol pathway; beta-ketoadipate pathway; pathway; gentisate; Corynebacterium efficiens; Corynebacterium glutamicum
Erscheinungsjahr
2006
Zeitschriftentitel
GENETICS AND MOLECULAR RESEARCH
Band
5
Ausgabe
4
Seite(n)
773-789
ISSN
1676-5680
Page URI
https://pub.uni-bielefeld.de/record/1596705

Zitieren

Brinkrolf K, Brune I, Tauch A. Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. GENETICS AND MOLECULAR RESEARCH. 2006;5(4):773-789.
Brinkrolf, K., Brune, I., & Tauch, A. (2006). Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. GENETICS AND MOLECULAR RESEARCH, 5(4), 773-789.
Brinkrolf, Karina, Brune, Iris, and Tauch, Andreas. 2006. “Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum”. GENETICS AND MOLECULAR RESEARCH 5 (4): 773-789.
Brinkrolf, K., Brune, I., and Tauch, A. (2006). Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. GENETICS AND MOLECULAR RESEARCH 5, 773-789.
Brinkrolf, K., Brune, I., & Tauch, A., 2006. Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. GENETICS AND MOLECULAR RESEARCH, 5(4), p 773-789.
K. Brinkrolf, I. Brune, and A. Tauch, “Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum”, GENETICS AND MOLECULAR RESEARCH, vol. 5, 2006, pp. 773-789.
Brinkrolf, K., Brune, I., Tauch, A.: Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. GENETICS AND MOLECULAR RESEARCH. 5, 773-789 (2006).
Brinkrolf, Karina, Brune, Iris, and Tauch, Andreas. “Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum”. GENETICS AND MOLECULAR RESEARCH 5.4 (2006): 773-789.

44 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Crystal structure of the VanR transcription factor and the role of its unique α-helix in effector recognition.
Kwak YM, Park SC, Na HW, Kang SG, Lee GS, Ko HJ, Kim PH, Oh BC, Yoon SI., FEBS J 285(20), 2018
PMID: 30095229
Corynebacterium Cell Factory Design and Culture Process Optimization for Muconic Acid Biosynthesis.
Lee HN, Shin WS, Seo SY, Choi SS, Song JS, Kim JY, Park JH, Lee D, Kim SY, Lee SJ, Chun GT, Kim ES., Sci Rep 8(1), 2018
PMID: 30575781
Biotransformation of ferulic acid to protocatechuic acid by Corynebacterium glutamicum ATCC 21420 engineered to express vanillate O-demethylase.
Okai N, Masuda T, Takeshima Y, Tanaka K, Yoshida KI, Miyamoto M, Ogino C, Kondo A., AMB Express 7(1), 2017
PMID: 28641405
Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli.
Okai N, Miyoshi T, Takeshima Y, Kuwahara H, Ogino C, Kondo A., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26392137
Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum.
Kallscheuer N, Vogt M, Kappelmann J, Krumbach K, Noack S, Bott M, Marienhagen J., Appl Microbiol Biotechnol 100(4), 2016
PMID: 26610800
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
Characterization of a Unique Pathway for 4-Cresol Catabolism Initiated by Phosphorylation in Corynebacterium glutamicum.
Du L, Ma L, Qi F, Zheng X, Jiang C, Li A, Wan X, Liu SJ, Li S., J Biol Chem 291(12), 2016
PMID: 26817843
Transcriptional regulation of the vanillate utilization genes (vanABK Operon) of Corynebacterium glutamicum by VanR, a PadR-like repressor.
Morabbi Heravi K, Lange J, Watzlawick H, Kalinowski J, Altenbuchner J., J Bacteriol 197(5), 2015
PMID: 25535273
Hydrazidase, a novel amidase signature enzyme that hydrolyzes acylhydrazides.
Oinuma K, Takuwa A, Taniyama K, Doi Y, Takaya N., J Bacteriol 197(6), 2015
PMID: 25583978
Functional characterization of a vanillin dehydrogenase in Corynebacterium glutamicum.
Ding W, Si M, Zhang W, Zhang Y, Chen C, Zhang L, Lu Z, Chen S, Shen X., Sci Rep 5(), 2015
PMID: 25622822
Cloning, expression, crystallization and crystallographic analysis of CouR from Rhodopseudomonas palustris.
Pan C, Hu YL, Jiang XN, Gai Y., Acta Crystallogr F Struct Biol Commun 71(pt 11), 2015
PMID: 26527270
Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium.
Unthan S, Grünberger A, van Ooyen J, Gätgens J, Heinrich J, Paczia N, Wiechert W, Kohlheyer D, Noack S., Biotechnol Bioeng 111(2), 2014
PMID: 23996851
Artificial oxidative stress-tolerant Corynebacterium glutamicum.
Lee JY, Lee HJ, Seo J, Kim ES, Lee HS, Kim P., AMB Express 4(), 2014
PMID: 24949252
Bioconversion of lignin model compounds with oleaginous Rhodococci.
Kosa M, Ragauskas AJ., Appl Microbiol Biotechnol 93(2), 2012
PMID: 22159607
Phenylacetic acid catabolism and its transcriptional regulation in Corynebacterium glutamicum.
Chen X, Kohl TA, Rückert C, Rodionov DA, Li LH, Ding JY, Kalinowski J, Liu SJ., Appl Environ Microbiol 78(16), 2012
PMID: 22685150
PcaO positively regulates pcaHG of the beta-ketoadipate pathway in Corynebacterium glutamicum.
Zhao KX, Huang Y, Chen X, Wang NX, Liu SJ., J Bacteriol 192(6), 2010
PMID: 20081038
Utilization of phenol and naphthalene affects synthesis of various amino acids in Corynebacterium glutamicum.
Lee SY, Le TH, Chang ST, Park JS, Kim YH, Min J., Curr Microbiol 61(6), 2010
PMID: 20443004
Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum.
Hoff B, Kamerewerd J, Sigl C, Mitterbauer R, Zadra I, Kürnsteiner H, Kück U., Eukaryot Cell 9(8), 2010
PMID: 20543063
Treatment of phenol-contaminated soil by Corynebacterium glutamicum and toxicity removal evaluation.
Lee SY, Kim BN, Han JH, Chang ST, Choi YW, Kim YH, Min J., J Hazard Mater 182(1-3), 2010
PMID: 20638173
Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source - a membrane proteome-centric view.
Haussmann U, Qi SW, Wolters D, Rögner M, Liu SJ, Poetsch A., Proteomics 9(14), 2009
PMID: 19639586
The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences.
Brinkrolf K, Plöger S, Solle S, Brune I, Nentwich SS, Hüser AT, Kalinowski J, Pühler A, Tauch A., Microbiology 154(pt 4), 2008
PMID: 18375800
Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis.
Veselý M, Knoppová M, Nesvera J, Pátek M., Appl Microbiol Biotechnol 76(1), 2007
PMID: 17483937
Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks.
Makarova KS, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Lapidus A, Copeland A, Kim E, Land M, Mavrommatis K, Pitluck S, Richardson PM, Detter C, Brettin T, Saunders E, Lai B, Ravel B, Kemner KM, Wolf YI, Sorokin A, Gerasimova AV, Gelfand MS, Fredrickson JK, Koonin EV, Daly MJ., PLoS One 2(9), 2007
PMID: 17895995

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 17183485
PubMed | Europe PMC

Suchen in

Google Scholar