Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-Based photonic wires

Heilemann M, Kasper R, Tinnefeld P, Sauer M (2006)
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 128(51): 16864-16875.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
; ; ;
Abstract / Bemerkung
Molecular photonic wires are one-dimensional representatives of a family of nanoscale molecular devices that transport excited-state energy over considerable distances in analogy to optical waveguides in the far-field. In particular, the design and synthesis of such complex supramolecular devices is challenging concerning the desired homogeneity of energy transport. On the other hand, novel optical techniques are available that permit direct investigation of heterogeneity by studying one device at a time. In this article, we describe our efforts to synthesize and study DNA-based molecular photonic wires that carry several chromophores arranged in an energetic downhill cascade and exploit fluorescence resonance energy transfer to convey excited-state energy. The focus of this work is to understand and control the heterogeneity of such complex systems, applying single-molecule fluorescence spectroscopy (SMFS) to dissect the different sources of heterogeneity, i.e., chemical heterogeneity and inhomogeneous broadening induced by the nanoenvironment. We demonstrate that the homogeneity of excited-state energy transport in DNA-based photonic wires is dramatically improved by immobilizing photonic wires in aqueous solution without perturbation by the surface. In addition, our study shows that the in situ construction of wire molecules, i.e., the stepwise hybridization of differently labeled oligonucleotides on glass cover slides, further decreases the observed heterogeneity in overall energy-transfer efficiency. The developed strategy enables efficient energy transfer between up to five chromophores in the majority of molecules investigated along a distance of similar to 14 nm. Finally, we used multiparameter SMFS to analyze the energy flow in photonic wires in more detail and to assign residual heterogeneity under optimized conditions in solution to different leakages and competing energy-transfer processes.
Erscheinungsjahr
2006
Zeitschriftentitel
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Band
128
Ausgabe
51
Seite(n)
16864-16875
ISSN
0002-7863
eISSN
1520-5126
Page URI
https://pub.uni-bielefeld.de/record/1596451

Zitieren

Heilemann M, Kasper R, Tinnefeld P, Sauer M. Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-Based photonic wires. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. 2006;128(51):16864-16875.
Heilemann, M., Kasper, R., Tinnefeld, P., & Sauer, M. (2006). Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-Based photonic wires. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 128(51), 16864-16875. doi:10.1021/ja065585x
Heilemann, M., Kasper, R., Tinnefeld, P., and Sauer, M. (2006). Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-Based photonic wires. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 128, 16864-16875.
Heilemann, M., et al., 2006. Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-Based photonic wires. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 128(51), p 16864-16875.
M. Heilemann, et al., “Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-Based photonic wires”, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 128, 2006, pp. 16864-16875.
Heilemann, M., Kasper, R., Tinnefeld, P., Sauer, M.: Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-Based photonic wires. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. 128, 16864-16875 (2006).
Heilemann, Mike, Kasper, Robert, Tinnefeld, Philip, and Sauer, Markus. “Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-Based photonic wires”. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 128.51 (2006): 16864-16875.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 17177437
PubMed | Europe PMC

Suchen in

Google Scholar