Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-Based photonic wires

Heilemann M, Kasper R, Tinnefeld P, Sauer M (2006)
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 128(51): 16864-16875.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Heilemann, MikeUniBi; Kasper, Robert; Tinnefeld, Philip; Sauer, MarkusUniBi
Abstract / Bemerkung
Molecular photonic wires are one-dimensional representatives of a family of nanoscale molecular devices that transport excited-state energy over considerable distances in analogy to optical waveguides in the far-field. In particular, the design and synthesis of such complex supramolecular devices is challenging concerning the desired homogeneity of energy transport. On the other hand, novel optical techniques are available that permit direct investigation of heterogeneity by studying one device at a time. In this article, we describe our efforts to synthesize and study DNA-based molecular photonic wires that carry several chromophores arranged in an energetic downhill cascade and exploit fluorescence resonance energy transfer to convey excited-state energy. The focus of this work is to understand and control the heterogeneity of such complex systems, applying single-molecule fluorescence spectroscopy (SMFS) to dissect the different sources of heterogeneity, i.e., chemical heterogeneity and inhomogeneous broadening induced by the nanoenvironment. We demonstrate that the homogeneity of excited-state energy transport in DNA-based photonic wires is dramatically improved by immobilizing photonic wires in aqueous solution without perturbation by the surface. In addition, our study shows that the in situ construction of wire molecules, i.e., the stepwise hybridization of differently labeled oligonucleotides on glass cover slides, further decreases the observed heterogeneity in overall energy-transfer efficiency. The developed strategy enables efficient energy transfer between up to five chromophores in the majority of molecules investigated along a distance of similar to 14 nm. Finally, we used multiparameter SMFS to analyze the energy flow in photonic wires in more detail and to assign residual heterogeneity under optimized conditions in solution to different leakages and competing energy-transfer processes.
Erscheinungsjahr
2006
Zeitschriftentitel
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Band
128
Ausgabe
51
Seite(n)
16864-16875
ISSN
0002-7863
eISSN
1520-5126
Page URI
https://pub.uni-bielefeld.de/record/1596451

Zitieren

Heilemann M, Kasper R, Tinnefeld P, Sauer M. Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-Based photonic wires. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. 2006;128(51):16864-16875.
Heilemann, M., Kasper, R., Tinnefeld, P., & Sauer, M. (2006). Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-Based photonic wires. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 128(51), 16864-16875. https://doi.org/10.1021/ja065585x
Heilemann, Mike, Kasper, Robert, Tinnefeld, Philip, and Sauer, Markus. 2006. “Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-Based photonic wires”. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 128 (51): 16864-16875.
Heilemann, M., Kasper, R., Tinnefeld, P., and Sauer, M. (2006). Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-Based photonic wires. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 128, 16864-16875.
Heilemann, M., et al., 2006. Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-Based photonic wires. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 128(51), p 16864-16875.
M. Heilemann, et al., “Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-Based photonic wires”, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 128, 2006, pp. 16864-16875.
Heilemann, M., Kasper, R., Tinnefeld, P., Sauer, M.: Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-Based photonic wires. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. 128, 16864-16875 (2006).
Heilemann, Mike, Kasper, Robert, Tinnefeld, Philip, and Sauer, Markus. “Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-Based photonic wires”. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 128.51 (2006): 16864-16875.

34 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Single-molecule photoredox catalysis.
Haimerl J, Ghosh I, König B, Vogelsang J, Lupton JM., Chem Sci 10(3), 2019
PMID: 30746104
Photometry unlocks 3D information from 2D localization microscopy data.
Franke C, Sauer M, van de Linde S., Nat Methods 14(1), 2017
PMID: 27869814
Core-Shell and Layer-by-Layer Assembly of 3D DNA Crystals.
McNeil R, Paukstelis PJ., Adv Mater 29(28), 2017
PMID: 28520255
DNA-directed spatial assembly of photosynthetic light-harvesting proteins.
Henry SL, Withers JM, Singh I, Cooper JM, Clark AW, Burley GA, Cogdell RJ., Org Biomol Chem 14(4), 2016
PMID: 26660647
Multichromophoric π-Conjugation: Modular Design for Gated and Cascade Energy Transfer.
Park BG, Hong DH, Lee HY, Lee M, Lee D., Chemistry 22(19), 2016
PMID: 27011263
DNA-Based Oligochromophores as Light-Harvesting Systems.
Ensslen P, Brandl F, Sezi S, Varghese R, Kutta RJ, Dick B, Wagenknecht HA., Chemistry 21(26), 2015
PMID: 26069203
Asymmetric dinuclear bis(dipyrrinato)zinc(II) complexes: broad absorption and unidirectional quantitative exciton transmission.
Tsuchiya M, Sakamoto R, Kusaka S, Kitagawa Y, Okumura M, Nishihara H., Chem Commun (Camb) 50(44), 2014
PMID: 24756540
Extending FRET cascades on linear DNA photonic wires.
Spillmann CM, Buckhout-White S, Oh E, Goldman ER, Ancona MG, Medintz IL., Chem Commun (Camb) 50(55), 2014
PMID: 24752334
Assembling programmable FRET-based photonic networks using designer DNA scaffolds.
Buckhout-White S, Spillmann CM, Algar WR, Khachatrian A, Melinger JS, Goldman ER, Ancona MG, Medintz IL., Nat Commun 5(), 2014
PMID: 25504073
Photonic DNA-chromophore nanowire networks: harnessing multiple supramolecular assembly modes.
Zhang N, Chu X, Fathalla M, Jayawickramarajah J., Langmuir 29(34), 2013
PMID: 23895408
DNA-multichromophore systems.
Teo YN, Kool ET., Chem Rev 112(7), 2012
PMID: 22424059
Preparation of supramolecular chromophoric assemblies using a DNA duplex.
Kashida H, Asanuma H., Phys Chem Chem Phys 14(20), 2012
PMID: 22532160
Site-specific assembly of DNA-based photonic wires by using programmable polyamides.
Su W, Schuster M, Bagshaw CR, Rant U, Burley GA., Angew Chem Int Ed Engl 50(12), 2011
PMID: 21387472
Photon cascade with clip-on fluorophores.
Friedrich F, Heckel A., Chemphyschem 12(11), 2011
PMID: 21567707
Directed formation of DNA nanoarrays through orthogonal self-assembly.
Burns JR, Zekonyte J, Siligardi G, Hussain R, Stulz E., Molecules 16(6), 2011
PMID: 21677604
Self-assembled DNA-based fluorescence waveguide with selectable output.
Hannestad JK, Gerrard SR, Brown T, Albinsson B., Small 7(22), 2011
PMID: 21901828
A chiroptical photoswitchable DNA complex.
Mammana A, Carroll GT, Areephong J, Feringa BL., J Phys Chem B 115(40), 2011
PMID: 21879715
Macromolecular multi-chromophoric scaffolding.
Schwartz E, Le Gac S, Cornelissen JJ, Nolte RJ, Rowan AE., Chem Soc Rev 39(5), 2010
PMID: 20419211
Single-molecule STED microscopy with photostable organic fluorophores.
Kasper R, Harke B, Forthmann C, Tinnefeld P, Hell SW, Sauer M., Small 6(13), 2010
PMID: 20521266
Multicolor single-molecule FRET to explore protein folding and binding.
Gambin Y, Deniz AA., Mol Biosyst 6(9), 2010
PMID: 20601974
The rylene colorant family--tailored nanoemitters for photonics research and applications.
Weil T, Vosch T, Hofkens J, Peneva K, Müllen K., Angew Chem Int Ed Engl 49(48), 2010
PMID: 20973116
Single-molecule photophysics of oxazines on DNA and its application in a FRET switch.
Vogelsang J, Cordes T, Tinnefeld P., Photochem Photobiol Sci 8(4), 2009
PMID: 19337662
Correlated movement and bending of nucleic acid structures visualized by multicolor single-molecule spectroscopy.
Person B, Stein IH, Steinhauer C, Vogelsang J, Tinnefeld P., Chemphyschem 10(9-10), 2009
PMID: 19499555
Cryptand cage: perfect skeleton for transition metal induced two-step fluorescence resonance energy transfer.
Sadhu KK, Banerjee S, Datta A, Bharadwaj PK., Chem Commun (Camb) (33), 2009
PMID: 19668823
Advances in single-molecule fluorescence methods for molecular biology.
Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T., Annu Rev Biochem 77(), 2008
PMID: 18412538
A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes.
Vogelsang J, Kasper R, Steinhauer C, Person B, Heilemann M, Sauer M, Tinnefeld P., Angew Chem Int Ed Engl 47(29), 2008
PMID: 18601270
Two-sided fluorescence resonance energy transfer for assessing molecular interactions of up to three distinct species in confocal microscopy.
Fazekas Z, Petrás M, Fábián A, Pályi-Krekk Z, Nagy P, Damjanovich S, Vereb G, Szöllosi J., Cytometry A 73(3), 2008
PMID: 18044751
Novel strategies for the site-specific covalent labelling of nucleic acids.
Weisbrod SH, Marx A., Chem Commun (Camb) (44), 2008
PMID: 19009049

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 17177437
PubMed | Europe PMC

Suchen in

Google Scholar