Postnatal development of dopamine innervation in the amygdala and the entorhinal cortex of the gerbil (Meriones unguiculatus)

Brummelte S, Teuchert-Noodt G (2006)
BRAIN RESEARCH 1125(1): 9-16.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
Dopamine (DA) projections from the mesencephalon are believed to play a critical role during development and are essential for cognitive and behavioral functions. Since the postnatal maturation patterns of these projections differ substantially between various brain regions, cortical, limbic or subcortical areas might exhibit varying vulnerabilities concerning developmental disorders. The dopaminergic afferents of the rodent prefrontal cortex show an extremely prolonged maturation which is very sensitive to epigenetic challenges. However, less is known about the development of the DA innervation of caudal limbic areas. Therefore, immunohistochemically stained DA fibers were quantitatively examined in the basolateral (BLA) and central amygdaloid nucleus (CE) and the ventrolateral entorhinal cortex (EC) of the Mongolian gerbil (Meriones unguiculatus). Animals of different ages, ranging from juvenile [postnatal day (PD) 14, 20, 30)] to adolescent (PD70), adult (6, 18 months) and aged (24 months), were analyzed. Results show a significant increase of fibers between PD14 and PD20 in the BLA and lateral part of the CE, with a trend for a subsequent decline in fiber densities until PD30. The EC and medial part of the CE showed no developmental changes. Interestingly, none of the investigated areas showed significant reductions of DA fibers during aging. (c) 2006 Elsevier B.V. All rights reserved.
Erscheinungsjahr
Zeitschriftentitel
BRAIN RESEARCH
Band
1125
Ausgabe
1
Seite(n)
9-16
ISSN
PUB-ID

Zitieren

Brummelte S, Teuchert-Noodt G. Postnatal development of dopamine innervation in the amygdala and the entorhinal cortex of the gerbil (Meriones unguiculatus). BRAIN RESEARCH. 2006;1125(1):9-16.
Brummelte, S., & Teuchert-Noodt, G. (2006). Postnatal development of dopamine innervation in the amygdala and the entorhinal cortex of the gerbil (Meriones unguiculatus). BRAIN RESEARCH, 1125(1), 9-16. doi:10.1016/j.brainres.2006.10.006
Brummelte, S., and Teuchert-Noodt, G. (2006). Postnatal development of dopamine innervation in the amygdala and the entorhinal cortex of the gerbil (Meriones unguiculatus). BRAIN RESEARCH 1125, 9-16.
Brummelte, S., & Teuchert-Noodt, G., 2006. Postnatal development of dopamine innervation in the amygdala and the entorhinal cortex of the gerbil (Meriones unguiculatus). BRAIN RESEARCH, 1125(1), p 9-16.
S. Brummelte and G. Teuchert-Noodt, “Postnatal development of dopamine innervation in the amygdala and the entorhinal cortex of the gerbil (Meriones unguiculatus)”, BRAIN RESEARCH, vol. 1125, 2006, pp. 9-16.
Brummelte, S., Teuchert-Noodt, G.: Postnatal development of dopamine innervation in the amygdala and the entorhinal cortex of the gerbil (Meriones unguiculatus). BRAIN RESEARCH. 1125, 9-16 (2006).
Brummelte, Susanne, and Teuchert-Noodt, Gertraud. “Postnatal development of dopamine innervation in the amygdala and the entorhinal cortex of the gerbil (Meriones unguiculatus)”. BRAIN RESEARCH 1125.1 (2006): 9-16.

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

DCC Receptors Drive Prefrontal Cortex Maturation by Determining Dopamine Axon Targeting in Adolescence.
Reynolds LM, Pokinko M, Torres-Berrío A, Cuesta S, Lambert LC, Del Cid Pellitero E, Wodzinski M, Manitt C, Krimpenfort P, Kolb B, Flores C., Biol Psychiatry 83(2), 2018
PMID: 28720317
The neurobiology of safety and threat learning in infancy.
Debiec J, Sullivan RM., Neurobiol Learn Mem 143(), 2017
PMID: 27826033
Making Dopamine Connections in Adolescence.
Hoops D, Flores C., Trends Neurosci 40(12), 2017
PMID: 29032842
Developmental neuroplasticity and the origin of neurodegenerative diseases.
Schaefers AT, Teuchert-Noodt G., World J Biol Psychiatry 17(8), 2016
PMID: 23705632
Morphology and dendritic maturation of developing principal neurons in the rat basolateral amygdala.
Ryan SJ, Ehrlich DE, Rainnie DG., Brain Struct Funct 221(2), 2016
PMID: 25381464
Experimental focal neocortical epilepsy is associated with reduced white matter volume growth: results from multiparametric MRI analysis.
Otte WM, van Meer MP, van der Marel K, Zwartbol R, Viergever MA, Braun KP, Dijkhuizen RM., Brain Struct Funct 220(1), 2015
PMID: 24013878
Resilience to amphetamine in mouse models of netrin-1 haploinsufficiency: role of mesocortical dopamine.
Pokinko M, Moquin L, Torres-Berrío A, Gratton A, Flores C., Psychopharmacology (Berl) 232(20), 2015
PMID: 26264903
dcc orchestrates the development of the prefrontal cortex during adolescence and is altered in psychiatric patients.
Manitt C, Eng C, Pokinko M, Ryan RT, Torres-Berrío A, Lopez JP, Yogendran SV, Daubaras MJ, Grant A, Schmidt ER, Tronche F, Krimpenfort P, Cooper HM, Pasterkamp RJ, Kolb B, Turecki G, Wong TP, Nestler EJ, Giros B, Flores C., Transl Psychiatry 3(), 2013
PMID: 24346136
Transient exposure of neonatal mice to neuregulin-1 results in hyperdopaminergic states in adulthood: implication in neurodevelopmental hypothesis for schizophrenia.
Kato T, Abe Y, Sotoyama H, Kakita A, Kominami R, Hirokawa S, Ozaki M, Takahashi H, Nawa H., Mol Psychiatry 16(3), 2011
PMID: 20142818
Activity-dependent structural plasticity.
Butz M, Wörgötter F, van Ooyen A., Brain Res Rev 60(2), 2009
PMID: 19162072
Effect of postnatal methamphetamine trauma and adolescent methylphenidate treatment on adult hippocampal neurogenesis in gerbils.
Schaefers AT, Teuchert-Noodt G, Bagorda F, Brummelte S., Eur J Pharmacol 616(1-3), 2009
PMID: 19540225
Density of dopaminergic fibres in the prefrontal cortex of gerbils is sensitive to aging.
Brummelte S, Teuchert-Noodt G., Behav Brain Funct 3(), 2007
PMID: 17352812

60 References

Daten bereitgestellt von Europe PubMed Central.

Do we still believe in the dopamine hypothesis? New data bring new evidence.
Abi-Dargham A., Int. J. Neuropsychopharmacol. 7 Suppl 1(), 2004
PMID: 14972078
Decreased density of tyrosine hydroxylase-immunoreactive axons in the entorhinal cortex of schizophrenic subjects.
Akil M, Edgar CL, Pierri JN, Casali S, Lewis DA., Biol. Psychiatry 47(5), 2000
PMID: 10704948
Hippocampal formation
Amaral, 1995
Postnatal development of the dopaminergic system of the striatum in the rat.
Antonopoulos J, Dori I, Dinopoulos A, Chiotelli M, Parnavelas JG., Neuroscience 110(2), 2002
PMID: 11958867
The catecholaminergic innervation of the rat amygdala.
Asan E., Adv Anat Embryol Cell Biol 142(), 1998
PMID: 9586282
Neonatal medial prefrontal cortex lesion enhances the sensitivity of the mesoaccumbal dopamine system.
Bennay M, Gernert M, Schwabe K, Enkel T, Koch M., Eur. J. Neurosci. 19(12), 2004
PMID: 15217384
Dopamine-containing systems in the CNS
Bjorklund, 1984
Long-term effects of a single adult methamphetamine challenge: minor impact on dopamine fibre density in limbic brain areas of gerbils.
Brummelte S, Grund T, Czok A, Teuchert-Noodt G, Neddens J., Behav Brain Funct 2(), 2006
PMID: 16569246
Developmentally induced imbalance of dopaminergic fibre densities in limbic brain regions of gerbils ( Meriones unguiculatus).
Busche A, Polascheck D, Lesting J, Neddens J, Teuchert-Noodt G., J Neural Transm (Vienna) 111(4), 2004
PMID: 15057515
Postnatal development of the dopamine transporter: a quantitative autoradiographic study.
Coulter CL, Happe HK, Murrin LC., Brain Res. Dev. Brain Res. 92(2), 1996
PMID: 8738124
Striatal dopamine receptors in Alzheimer-type dementia.
Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Markakis D., Neurosci. Lett. 52(1-2), 1984
PMID: 6241300
A novel pharmacological concept in an animal model of psychosis
Dawirs, Acta Psychiatr. Scand. (), 2001
Regional and laminar density of the dopamine innervation in adult rat cerebral cortex.
Descarries L, Lemay B, Doucet G, Berger B., Neuroscience 21(3), 1987
PMID: 3627435
Evidence for the importance of dopamine for prefrontal cortex functions early in life.
Diamond A., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 351(1346), 1996
PMID: 8941960
Influence of methylphenidate on brain development--an update of recent animal experiments.
Grund T, Lehmann K, Bock N, Rothenberger A, Teuchert-Noodt G., Behav Brain Funct 2(), 2006
PMID: 16403217
Differentiation of the midbrain dopaminergic pathways during mouse development.
Hu Z, Cooper M, Crockett DP, Zhou R., J. Comp. Neurol. 476(3), 2004
PMID: 15269972
Development of the dopaminergic innervation in the prefrontal cortex of the rat.
Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HB., J. Comp. Neurol. 269(1), 1988
PMID: 3361004
Dopamine modulates excitability of basolateral amygdala neurons in vitro.
Kroner S, Rosenkranz JA, Grace AA, Barrionuevo G., J. Neurophysiol. 93(3), 2004
PMID: 15537813
Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment.
Laruelle M, Kegeles LS, Abi-Dargham A., Ann. N. Y. Acad. Sci. 1003(), 2003
PMID: 14684442
Ontogeny of the dopamine innervation in the nucleus accumbens of gerbils.
Lesting J, Neddens J, Teuchert-Noodt G., Brain Res. 1066(1-2), 2005
PMID: 16343448
A specialized subclass of interneurons mediates dopaminergic facilitation of amygdala function.
Marowsky A, Yanagawa Y, Obata K, Vogt KE., Neuron 48(6), 2005
PMID: 16364905
Selective changes in the contents of noradrenaline, dopamine and serotonin in rat brain areas during aging.
Miguez JM, Aldegunde M, Paz-Valinas L, Recio J, Sanchez-Barcelo E., J Neural Transm (Vienna) 106(11-12), 1999
PMID: 10651105
Age-associated changes in the densities of presynaptic monoamine transporters in different regions of the rat brain from early juvenile life to late adulthood.
Moll GH, Mehnert C, Wicker M, Bock N, Rothenberger A, Ruther E, Huether G., Brain Res. Dev. Brain Res. 119(2), 2000
PMID: 10675775

Paxinos, 1986
Organization of projections from the basomedial nucleus of the amygdala: a PHAL study in the rat.
Petrovich GD, Risold PY, Swanson LW., J. Comp. Neurol. 374(3), 1996
PMID: 8906507
Connectivity of the rat amygdaloid complex
Pitkanen, 2000
Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons.
Quirk GJ, Likhtik E, Pelletier JG, Pare D., J. Neurosci. 23(25), 2003
PMID: 14507980
Afferent connections of the amygdalopiriform transition area in the rat.
Santiago AC, Shammah-Lagnado SJ., J. Comp. Neurol. 489(3), 2005
PMID: 16025448
Alterations of striatal dopamine receptor binding in Alzheimer disease are associated with Lewy body pathology and antemortem psychosis.
Sweet RA, Hamilton RL, Healy MT, Wisniewski SR, Henteleff R, Pollock BG, Lewis DA, DeKosky ST., Arch. Neurol. 58(3), 2001
PMID: 11255451
Comparative postnatal development of dopamine D(1), D(2) and D(4) receptors in rat forebrain.
Tarazi FI, Baldessarini RJ., Int. J. Dev. Neurosci. 18(1), 2000
PMID: 10708903
Postnatal development of dopamine D4-like receptors in rat forebrain regions: comparison with D2-like receptors.
Tarazi FI, Tomasini EC, Baldessarini RJ., Brain Res. Dev. Brain Res. 110(2), 1998
PMID: 9748595
Neuronal degeneration and reorganization: a mutual principle in pathological and in healthy interactions of limbic and prefrontal circuits
Teuchert-Noodt, J. Neural (), 2000
Neonatal lesions of the left entorhinal cortex affect dopamine metabolism in the rat brain.
Uehara T, Tanii Y, Sumiyoshi T, Kurachi M., Brain Res. 860(1-2), 2000
PMID: 10727625

Valverde, 1998
Morphological evidence for a dopaminergic terminal field in the hippocampal formation of young and adult rat.
Verney C, Baulac M, Berger B, Alvarez C, Vigny A, Helle KB., Neuroscience 14(4), 1985
PMID: 2860616
Contralateral prefrontal projections in gerbils mature abnormally after early methamphetamine trauma and isolated rearing
Witte, J. Neural Transm. (), 2006

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 17112487
PubMed | Europe PMC

Suchen in

Google Scholar