Mutation, selection, and ancestry in branching models: a variational approach
Baake E, Georgii H-O (2007)
JOURNAL OF MATHEMATICAL BIOLOGY 54(2): 257-303.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Baake, EllenUniBi;
Georgii, Hans-Otto
Einrichtung
Abstract / Bemerkung
We consider the evolution of populations under the joint action of mutation and differential reproduction, or selection. The population is modelled as a finite-type Markov branching process in continuous time, and the associated genealogical tree is viewed both in the forward and the backward direction of time. The stationary type distribution of the reversed process, the so-called ancestral distribution, turns out as a key for the study of mutation-selection balance. This balance can be expressed in the form of a variational principle that quantifies the respective roles of reproduction and mutation for any possible type distribution. It shows that the mean growth rate of the population results from a competition for a maximal long-term growth rate, as given by the difference between the current mean reproduction rate, and an asymptotic decay rate related to the mutation process; this tradeoff is won by the ancestral distribution. We then focus on the case when the type is determined by a sequence of letters (like nucleotides or matches/mismatches relative to a reference sequence), and we ask how much of the above competition can still be seen by observing only the letter composition (as given by the frequencies of the various letters within the sequence). If mutation and reproduction rates can be approximated in a smooth way, the fitness of letter compositions resulting from the interplay of reproduction and mutation is determined in the limit as the number of sequence sites tends to infinity. Our main application is the quasispecies model of sequence evolution with mutation coupled to reproduction but independent across sites, and a fitness function that is invariant under permutation of sites. In this model, the fitness of letter compositions is worked out explicitly. In certain cases, their competition leads to a phase transition.
Stichworte
mutation-selection models;
quasispecies model;
large deviations;
variational analysis;
branching processes
Erscheinungsjahr
2007
Zeitschriftentitel
JOURNAL OF MATHEMATICAL BIOLOGY
Band
54
Ausgabe
2
Seite(n)
257-303
ISSN
0303-6812
eISSN
1432-1416
Page URI
https://pub.uni-bielefeld.de/record/1595869
Zitieren
Baake E, Georgii H-O. Mutation, selection, and ancestry in branching models: a variational approach. JOURNAL OF MATHEMATICAL BIOLOGY. 2007;54(2):257-303.
Baake, E., & Georgii, H. - O. (2007). Mutation, selection, and ancestry in branching models: a variational approach. JOURNAL OF MATHEMATICAL BIOLOGY, 54(2), 257-303. https://doi.org/10.1007/s00285-006-0039-5
Baake, Ellen, and Georgii, Hans-Otto. 2007. “Mutation, selection, and ancestry in branching models: a variational approach”. JOURNAL OF MATHEMATICAL BIOLOGY 54 (2): 257-303.
Baake, E., and Georgii, H. - O. (2007). Mutation, selection, and ancestry in branching models: a variational approach. JOURNAL OF MATHEMATICAL BIOLOGY 54, 257-303.
Baake, E., & Georgii, H.-O., 2007. Mutation, selection, and ancestry in branching models: a variational approach. JOURNAL OF MATHEMATICAL BIOLOGY, 54(2), p 257-303.
E. Baake and H.-O. Georgii, “Mutation, selection, and ancestry in branching models: a variational approach”, JOURNAL OF MATHEMATICAL BIOLOGY, vol. 54, 2007, pp. 257-303.
Baake, E., Georgii, H.-O.: Mutation, selection, and ancestry in branching models: a variational approach. JOURNAL OF MATHEMATICAL BIOLOGY. 54, 257-303 (2007).
Baake, Ellen, and Georgii, Hans-Otto. “Mutation, selection, and ancestry in branching models: a variational approach”. JOURNAL OF MATHEMATICAL BIOLOGY 54.2 (2007): 257-303.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
12 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Generalized quasispecies model on finite metric spaces: isometry groups and spectral properties of evolutionary matrices.
Semenov YS, Novozhilov AS., J Math Biol 78(3), 2019
PMID: 30187224
Semenov YS, Novozhilov AS., J Math Biol 78(3), 2019
PMID: 30187224
The genealogical decomposition of a matrix population model with applications to the aggregation of stages.
Bienvenu F, Akçay E, Legendre S, McCandlish DM., Theor Popul Biol 115(), 2017
PMID: 28476403
Bienvenu F, Akçay E, Legendre S, McCandlish DM., Theor Popul Biol 115(), 2017
PMID: 28476403
Noise-driven growth rate gain in clonal cellular populations.
Hashimoto M, Nozoe T, Nakaoka H, Okura R, Akiyoshi S, Kaneko K, Kussell E, Wakamoto Y., Proc Natl Acad Sci U S A 113(12), 2016
PMID: 26951676
Hashimoto M, Nozoe T, Nakaoka H, Okura R, Akiyoshi S, Kaneko K, Kussell E, Wakamoto Y., Proc Natl Acad Sci U S A 113(12), 2016
PMID: 26951676
On Eigen's Quasispecies Model, Two-Valued Fitness Landscapes, and Isometry Groups Acting on Finite Metric Spaces.
Semenov YS, Novozhilov AS., Bull Math Biol 78(5), 2016
PMID: 27230609
Semenov YS, Novozhilov AS., Bull Math Biol 78(5), 2016
PMID: 27230609
Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution.
Lenz U, Kluth S, Baake E, Wakolbinger A., Theor Popul Biol 103(), 2015
PMID: 25891326
Lenz U, Kluth S, Baake E, Wakolbinger A., Theor Popul Biol 103(), 2015
PMID: 25891326
Exact solutions for the selection-mutation equilibrium in the Crow-Kimura evolutionary model.
Semenov YS, Novozhilov AS., Math Biosci 266(), 2015
PMID: 26005029
Semenov YS, Novozhilov AS., Math Biosci 266(), 2015
PMID: 26005029
Linear algebra of the permutation invariant Crow-Kimura model of prebiotic evolution.
Bratus AS, Novozhilov AS, Semenov YS., Math Biosci 256(), 2014
PMID: 25149562
Bratus AS, Novozhilov AS, Semenov YS., Math Biosci 256(), 2014
PMID: 25149562
On the behavior of the leading eigenvalue of Eigen's evolutionary matrices.
Semenov YS, Bratus AS, Novozhilov AS., Math Biosci 258(), 2014
PMID: 25445764
Semenov YS, Bratus AS, Novozhilov AS., Math Biosci 258(), 2014
PMID: 25445764
Optimal lineage principle for age-structured populations.
Wakamoto Y, Grosberg AY, Kussell E., Evolution 66(1), 2012
PMID: 22220869
Wakamoto Y, Grosberg AY, Kussell E., Evolution 66(1), 2012
PMID: 22220869
Individual histories and selection in heterogeneous populations.
Leibler S, Kussell E., Proc Natl Acad Sci U S A 107(29), 2010
PMID: 20616073
Leibler S, Kussell E., Proc Natl Acad Sci U S A 107(29), 2010
PMID: 20616073
Robustness and epistasis in mutation-selection models.
Wolff A, Krug J., Phys Biol 6(3), 2009
PMID: 19411737
Wolff A, Krug J., Phys Biol 6(3), 2009
PMID: 19411737
Dynamics of the Eigen and the Crow-Kimura models for molecular evolution.
Saakian DB, Rozanova O, Akmetzhanov A., Phys Rev E Stat Nonlin Soft Matter Phys 78(4 pt 1), 2008
PMID: 18999456
Saakian DB, Rozanova O, Akmetzhanov A., Phys Rev E Stat Nonlin Soft Matter Phys 78(4 pt 1), 2008
PMID: 18999456
33 References
Daten bereitgestellt von Europe PubMed Central.
Akin, 1979
Athreya, 1972
An asymptotic maximum principle for essentially linear evolution models.
Baake E, Baake M, Bovier A, Klein M., J Math Biol 50(1), 2004
PMID: 15322822
Baake E, Baake M, Bovier A, Klein M., J Math Biol 50(1), 2004
PMID: 15322822
Mutation-selection models solved exactly with methods of statistical mechanics.
Baake E, Wagner H., Genet. Res. 78(1), 2001
PMID: 11556140
Baake E, Wagner H., Genet. Res. 78(1), 2001
PMID: 11556140
Bürger, 2000
Crow, 1970
Dembo, 1998
Edwards, Theor. Pop. Biol. 61(), 2002
Selforganization of matter and the evolution of biological macromolecules.
Eigen M., Naturwissenschaften 58(10), 1971
PMID: 4942363
Eigen M., Naturwissenschaften 58(10), 1971
PMID: 4942363
Eigen, Adv. Chem. Phys. 75(), 1989
Ewens, 2004
Ewens, 2005
AUTHOR UNKNOWN, 0
A maximum principle for the mutation-selection equilibrium of nucleotide sequences.
Garske T, Grimm U., Bull. Math. Biol. 66(3), 2004
PMID: 15006441
Garske T, Grimm U., Bull. Math. Biol. 66(3), 2004
PMID: 15006441
Georgii, Adv. Appl. Prob. 35(), 2003
On the selection and evolution of regulatory DNA motifs.
Gerland U, Hwa T., J. Mol. Evol. 55(4), 2002
PMID: 12355260
Gerland U, Hwa T., J. Mol. Evol. 55(4), 2002
PMID: 12355260
Hein, 2005
Hermisson, Theor. Pop. Biol. 62(), 2002
den, 2000
Jagers, Z für Wahrscheinlichkeitstheorie und verwandte Gebiete 65(), 1984
Jagers, Stoch. Proc. Appl. 32(), 1989
Jagers, J. Appl. Prob. 29(), 1992
A quasispecies approach to viral evolution in the context of an adaptive immune system.
Kamp C., Microbes Infect. 5(15), 2003
PMID: 14670453
Kamp C., Microbes Infect. 5(15), 2003
PMID: 14670453
Karlin, 1975
Kemeny, 1981
Kesten, Ann. Math. Statist. 37(), 1966
Kurtz, 1997
Lindvall, 1992
Lyons, Ann. Prob. 23(), 1995
Mitrinovic, 1970
Rockafellar, 1970
Stannat, Probab. Theory Relat. Fields 129(), 2004
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 17075709
PubMed | Europe PMC
Suchen in