The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula

Tellstroem V, Usadel B, Thimm O, Stitt M, Kuester H, Niehaus K (2007)
Plant Physiology 143(2): 825-837.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Tellstroem, Verena; Usadel, Bjoern; Thimm, Oliver; Stitt, Mark; Kuester, Helge; Niehaus, KarstenUniBi
Abstract / Bemerkung
In the establishment of symbiosis between Medicago truncatula and the nitrogen-fixing bacterium Sinorhizobium meliloti, the lipopolysaccharide (LPS) of the microsymbiont plays an important role as a signal molecule. It has been shown in cell cultures that the LPS is able to suppress an elicitor-induced oxidative burst. To investigate the effect of S. meliloti LPS on defense-associated gene expression, a microarray experiment was performed. For evaluation of the M. truncatula microarray datasets, the software tool MapMan, which was initially developed for the visualization of Arabidopsis (Arabidopsis thaliana) datasets, was adapted by assigning Medicago genes to the ontology originally created for Arabidopsis. This allowed functional visualization of gene expression of M. truncatula suspension-cultured cells treated with invertase as an elicitor. A gene expression pattern characteristic of a defense response was observed. Concomitant treatment of M. truncatula suspension-cultured cells with invertase and S. meliloti LPS leads to a lower level of induction of defense-associated genes compared to induction rates in cells treated with invertase alone. This suppression of defense-associated transcriptional rearrangement affects genes induced as well as repressed by elicitation and acts on transcripts connected to virtually all kinds of cellular processes. This indicates that LPS of the symbiont not only suppresses fast defense responses as the oxidative burst, but also exerts long-term influences, including transcriptional adjustment to pathogen attack. These data indicate a role for LPS during infection of the plant by its symbiotic partner.
Erscheinungsjahr
2007
Zeitschriftentitel
Plant Physiology
Band
143
Ausgabe
2
Seite(n)
825-837
ISSN
0032-0889
eISSN
1532-2548
Page URI
https://pub.uni-bielefeld.de/record/1595807

Zitieren

Tellstroem V, Usadel B, Thimm O, Stitt M, Kuester H, Niehaus K. The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula. Plant Physiology. 2007;143(2):825-837.
Tellstroem, V., Usadel, B., Thimm, O., Stitt, M., Kuester, H., & Niehaus, K. (2007). The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula. Plant Physiology, 143(2), 825-837. https://doi.org/10.1104/pp.106.090985
Tellstroem, Verena, Usadel, Bjoern, Thimm, Oliver, Stitt, Mark, Kuester, Helge, and Niehaus, Karsten. 2007. “The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula”. Plant Physiology 143 (2): 825-837.
Tellstroem, V., Usadel, B., Thimm, O., Stitt, M., Kuester, H., and Niehaus, K. (2007). The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula. Plant Physiology 143, 825-837.
Tellstroem, V., et al., 2007. The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula. Plant Physiology, 143(2), p 825-837.
V. Tellstroem, et al., “The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula”, Plant Physiology, vol. 143, 2007, pp. 825-837.
Tellstroem, V., Usadel, B., Thimm, O., Stitt, M., Kuester, H., Niehaus, K.: The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula. Plant Physiology. 143, 825-837 (2007).
Tellstroem, Verena, Usadel, Bjoern, Thimm, Oliver, Stitt, Mark, Kuester, Helge, and Niehaus, Karsten. “The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula”. Plant Physiology 143.2 (2007): 825-837.

47 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic bacterium, but not nitrogen-fixing rhizobial symbiosis.
Pfeilmeier S, George J, Morel A, Roy S, Smoker M, Stransfeld L, Downie JA, Peeters N, Malone JG, Zipfel C., Plant Biotechnol J 17(3), 2019
PMID: 30120864
Cell Autoaggregation, Biofilm Formation, and Plant Attachment in a Sinorhizobium meliloti lpsB Mutant.
Sorroche F, Bogino P, Russo DM, Zorreguieta A, Nievas F, Morales GM, Hirsch AM, Giordano W., Mol Plant Microbe Interact 31(10), 2018
PMID: 30136892
The Role of Plant Innate Immunity in the Legume-Rhizobium Symbiosis.
Cao Y, Halane MK, Gassmann W, Stacey G., Annu Rev Plant Biol 68(), 2017
PMID: 28142283
Ecology and Genomic Insights into Plant-Pathogenic and Plant-Nonpathogenic Endophytes.
Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ, Sessitsch A., Annu Rev Phytopathol 55(), 2017
PMID: 28489497
Interplay of Pathogen-Induced Defense Responses and Symbiotic Establishment in Medicago truncatula.
Chen T, Duan L, Zhou B, Yu H, Zhu H, Cao Y, Zhang Z., Front Microbiol 8(), 2017
PMID: 28611764
The genome analysis of Candidatus Burkholderia crenata reveals that secondary metabolism may be a key function of the Ardisia crenata leaf nodule symbiosis.
Carlier A, Fehr L, Pinto-Carbó M, Schäberle T, Reher R, Dessein S, König G, Eberl L., Environ Microbiol 18(8), 2016
PMID: 26663534
Pseudomonas fluorescens PTA-CT2 Triggers Local and Systemic Immune Response Against Botrytis cinerea in Grapevine.
Gruau C, Trotel-Aziz P, Villaume S, Rabenoelina F, Clément C, Baillieul F, Aziz A., Mol Plant Microbe Interact 28(10), 2015
PMID: 26075828
The symbiotic transcription factor MtEFD and cytokinins are positively acting in the Medicago truncatula and Ralstonia solanacearum pathogenic interaction.
Moreau S, Fromentin J, Vailleau F, Vernié T, Huguet S, Balzergue S, Frugier F, Gamas P, Jardinaud MF., New Phytol 201(4), 2014
PMID: 24325235
Immunosuppression during Rhizobium-legume symbiosis.
Luo L, Lu D., Plant Signal Behav 9(3), 2014
PMID: 24556951
Unexpectedly low nitrogen acquisition and absence of root architecture adaptation to nitrate supply in a Medicago truncatula highly branched root mutant.
Bourion V, Martin C, de Larambergue H, Jacquin F, Aubert G, Martin-Magniette ML, Balzergue S, Lescure G, Citerne S, Lepetit M, Munier-Jolain N, Salon C, Duc G., J Exp Bot 65(9), 2014
PMID: 24706718
Microbial recognition and evasion of host immunity.
Pel MJ, Pieterse CM., J Exp Bot 64(5), 2013
PMID: 23095994
Maize root lectins mediate the interaction with Herbaspirillum seropedicae via N-acetyl glucosamine residues of lipopolysaccharides.
Balsanelli E, Tuleski TR, de Baura VA, Yates MG, Chubatsu LS, Pedrosa Fde O, de Souza EM, Monteiro RA., PLoS One 8(10), 2013
PMID: 24130823
Modulation of host immunity by beneficial microbes.
Zamioudis C, Pieterse CM., Mol Plant Microbe Interact 25(2), 2012
PMID: 21995763
Symbiosis specificity in the legume: rhizobial mutualism.
Wang D, Yang S, Tang F, Zhu H., Cell Microbiol 14(3), 2012
PMID: 22168434
Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes.
Zahaf O, Blanchet S, de Zélicourt A, Alunni B, Plet J, Laffont C, de Lorenzo L, Imbeaud S, Ichanté JL, Diet A, Badri M, Zabalza A, González EM, Delacroix H, Gruber V, Frugier F, Crespi M., Mol Plant 5(5), 2012
PMID: 22419822
Genes expressed in tissue-cultured seedlings of mountain laurel (Kalmia latifolia L.) with colonizing Streptomyces padanus AOK30
Meguro A, Toyoda K, Ogiyama H, Hasegawa S, Nishimura T, Kunoh H, Shiraishi T., J. Gen. Plant Pathol. 78(5), 2012
PMID: IND44815247
Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncatula.
Ariel F, Brault-Hernandez M, Laffont C, Huault E, Brault M, Plet J, Moison M, Blanchet S, Ichanté JL, Chabaud M, Carrere S, Crespi M, Chan RL, Frugier F., Plant Cell 24(9), 2012
PMID: 23023168
Transcription reprogramming during root nodule development in Medicago truncatula.
Moreau S, Verdenaud M, Ott T, Letort S, de Billy F, Niebel A, Gouzy J, de Carvalho-Niebel F, Gamas P., PLoS One 6(1), 2011
PMID: 21304580
Of PAMPs and effectors: the blurred PTI-ETI dichotomy.
Thomma BP, Nürnberger T, Joosten MH., Plant Cell 23(1), 2011
PMID: 21278123
Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches.
Maunoury N, Redondo-Nieto M, Bourcy M, Van de Velde W, Alunni B, Laporte P, Durand P, Agier N, Marisa L, Vaubert D, Delacroix H, Duc G, Ratet P, Aggerbeck L, Kondorosi E, Mergaert P., PLoS One 5(3), 2010
PMID: 20209049
Transcript profiling of common bean (Phaseolus vulgaris L.) using the GeneChip Soybean Genome Array: optimizing analysis by masking biased probes.
Yang SS, Valdés-López O, Xu WW, Bucciarelli B, Gronwald JW, Hernández G, Vance CP., BMC Plant Biol 10(), 2010
PMID: 20459672
The compact root architecture1 gene regulates lignification, flavonoid production, and polar auxin transport in Medicago truncatula.
Laffont C, Blanchet S, Lapierre C, Brocard L, Ratet P, Crespi M, Mathesius U, Frugier F., Plant Physiol 153(4), 2010
PMID: 20522723
Endocytosis in plant-microbe interactions.
Leborgne-Castel N, Adam T, Bouhidel K., Protoplasma 247(3-4), 2010
PMID: 20814704
Lipopolysaccharide mobility in leaf tissue of Arabidopsis thaliana.
Zeidler D, Dubery IA, Schmitt-Kopplin P, Von Rad U, Durner J., Mol Plant Pathol 11(6), 2010
PMID: 21029320
Identification of transcription factors involved in root apex responses to salt stress in Medicago truncatula.
Gruber V, Blanchet S, Diet A, Zahaf O, Boualem A, Kakar K, Alunni B, Udvardi M, Frugier F, Crespi M., Mol Genet Genomics 281(1), 2009
PMID: 18987888
Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions.
Soto MJ, Domínguez-Ferreras A, Pérez-Mendoza D, Sanjuán J, Olivares J., Cell Microbiol 11(3), 2009
PMID: 19134114
A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize.
Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, Stitt M., Plant Cell Environ 32(9), 2009
PMID: 19389052
Transcriptome analysis of a bacterially induced basal and hypersensitive response of Medicago truncatula.
Bozsó Z, Maunoury N, Szatmari A, Mergaert P, Ott PG, Zsíros LR, Szabó E, Kondorosi E, Klement Z., Plant Mol Biol 70(6), 2009
PMID: 19466566
Receptor-mediated signalling in plants: molecular patterns and programmes.
Tör M, Lotze MT, Holton N., J Exp Bot 60(13), 2009
PMID: 19628572
Gene expression profiling in susceptible interaction of grapevine with its fungal pathogen Eutypa lata: extending MapMan ontology for grapevine.
Rotter A, Camps C, Lohse M, Kappel C, Pilati S, Hren M, Stitt M, Coutos-Thévenot P, Moser C, Usadel B, Delrot S, Gruden K., BMC Plant Biol 9(), 2009
PMID: 19656401
Defects in rhizobial cyclic glucan and lipopolysaccharide synthesis alter legume gene expression during nodule development.
D'Antuono AL, Ott T, Krusell L, Voroshilova V, Ugalde RA, Udvardi M, Lepek VC., Mol Plant Microbe Interact 21(1), 2008
PMID: 18052882
Breaking the barriers: microbial effector molecules subvert plant immunity.
Göhre V, Robatzek S., Annu Rev Phytopathol 46(), 2008
PMID: 18422429
Molecular determinants of a symbiotic chronic infection.
Gibson KE, Kobayashi H, Walker GC., Annu Rev Genet 42(), 2008
PMID: 18983260
Mutations in lipopolysaccharide biosynthetic genes impair maize rhizosphere and root colonization of Rhizobium tropici CIAT899.
Ormeño-Orrillo E, Rosenblueth M, Luyten E, Vanderleyden J, Martínez-Romero E., Environ Microbiol 10(5), 2008
PMID: 18312393
Seven in absentia proteins affect plant growth and nodulation in Medicago truncatula.
Den Herder G, De Keyser A, De Rycke R, Rombauts S, Van de Velde W, Clemente MR, Verplancke C, Mergaert P, Kondorosi E, Holsters M, Goormachtig S., Plant Physiol 148(1), 2008
PMID: 18599652
EFD Is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula.
Vernié T, Moreau S, de Billy F, Plet J, Combier JP, Rogers C, Oldroyd G, Frugier F, Niebel A, Gamas P., Plant Cell 20(10), 2008
PMID: 18978033
Microbe-associated molecular patterns (MAMPs) probe plant immunity.
Bittel P, Robatzek S., Curr Opin Plant Biol 10(4), 2007
PMID: 17652011
Adaptation of the MapMan ontology to biotic stress responses: application in solanaceous species.
Rotter A, Usadel B, Baebler S, Stitt M, Gruden K., Plant Methods 3(), 2007
PMID: 17784939
Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis.
Drissner D, Kunze G, Callewaert N, Gehrig P, Tamasloukht M, Boller T, Felix G, Amrhein N, Bucher M., Science 318(5848), 2007
PMID: 17932296

47 References

Daten bereitgestellt von Europe PubMed Central.

Bacterial lipopolysaccharides as inducers of disease resistance in tobacco.
Graham TL, Sequeira L, Huang TS., Appl. Environ. Microbiol. 34(4), 1977
PMID: 21613
Characterization of the lipopolysaccharide from a Rhizobium phaseoli mutant that is defective in infection thread development.
Carlson RW, Kalembasa S, Turowski D, Pachori P, Noel KD., J. Bacteriol. 169(11), 1987
PMID: 3667520
Rhizobium lipopolysaccharide modulates infection thread development in white clover root hairs.
Dazzo FB, Truchet GL, Hollingsworth RI, Hrabak EM, Pankratz HS, Philip-Hollingsworth S, Salzwedel JL, Chapman K, Appenzeller L, Squartini A., J. Bacteriol. 173(17), 1991
PMID: 1885517
A Rhizobium meliloti lipopolysaccharide mutant altered in competitiveness for nodulation of alfalfa.
Lagares A, Caetano-Anolles G, Niehaus K, Lorenzen J, Ljunggren HD, Puhler A, Favelukes G., J. Bacteriol. 174(18), 1992
PMID: 1325969
Inhibition of ATPase activity in pea plasma membranes by fungal suppressors from Mycosphaerella pinodes and their peptide moieties.
Kato T, Shiraishi T, Toyoda K, Saitoh K, Satoh Y, Tahara M, Yamada T, Oku H., Plant Cell Physiol. 34(3), 1993
PMID: 8019782
The octadecanoic pathway: signal molecules for the regulation of secondary pathways.
Blechert S, Brodschelm W, Holder S, Kammerer L, Kutchan TM, Mueller MJ, Xia ZQ, Zenk MH., Proc. Natl. Acad. Sci. U.S.A. 92(10), 1995
PMID: 7753776
A supprescin from a phytopathogenic fungus deactivates transcription of a plant defense gene encoding phenylalanine ammonia-lyase.
Wada M, Kato H, Malik K, Sriprasertsak P, Ichinose Y, Shiraishi T, Yamada T., J. Mol. Biol. 249(3), 1995
PMID: 7783206
Antioxidant defenses in the peripheral cell layers of legume root nodules.
Dalton DA, Joyner SL, Becana M, Iturbe-Ormaetxe I, Chatfield JM., Plant Physiol. 116(1), 1998
PMID: 9449834
Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula.
Suzuki H, Reddy MS, Naoumkina M, Aziz N, May GD, Huhman DV, Sumner LW, Blount JW, Mendes P, Dixon RA., Planta 220(5), 2004
PMID: 15605242
Plants have a sensitive perception system for the most conserved domain of bacterial flagellin.
Felix G, Duran JD, Volko S, Boller T., Plant J. 18(3), 1999
PMID: 10377992
Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses.
Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N, Selbig J, Hannemann J, Piques MC, Steinhauser D, Scheible WR, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt M., Plant Physiol. 138(3), 2005
PMID: 16009995
The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris.
Silipo A, Molinaro A, Sturiale L, Dow JM, Erbs G, Lanzetta R, Newman MA, Parrilli M., J. Biol. Chem. 280(39), 2005
PMID: 16048996
Conversion of MapMan to allow the analysis of transcript data from Solanaceous species: effects of genetic and environmental alterations in energy metabolism in the leaf.
Urbanczyk-Wochniak E, Usadel B, Thimm O, Nunes-Nesi A, Carrari F, Davy M, Blasing O, Kowalczyk M, Weicht D, Polinceusz A, Meyer S, Stitt M, Fernie AR., Plant Mol. Biol. 60(5), 2006
PMID: 16649112
Caterpillar-elicited methanol emission: a new signal in plant-herbivore interactions?
von Dahl CC, Havecker M, Schlogl R, Baldwin IT., Plant J. 46(6), 2006
PMID: 16805729
Lipopolysaccharide-responsive phosphoproteins in Nicotiana tabacum cells.
Gerber IB, Laukens K, Witters E, Dubery IA., Plant Physiol. Biochem. 44(5-6), 2006
PMID: 16889970
Nonhost resistance and nonspecific plant defenses.
Heath MC., Curr. Opin. Plant Biol. 3(4), 2000
PMID: 10873843
Coordinated plant defense responses in Arabidopsis revealed by microarray analysis.
Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM., Proc. Natl. Acad. Sci. U.S.A. 97(21), 2000
PMID: 11027363
Interplay of signaling pathways in plant disease resistance.
Feys BJ, Parker JE., Trends Genet. 16(10), 2000
PMID: 11050331
Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction.
Santos R, Herouart D, Sigaud S, Touati D, Puppo A., Mol. Plant Microbe Interact. 14(1), 2001
PMID: 11194876
Regulation of the Arabidopsis transcriptome by oxidative stress.
Desikan R, A-H-Mackerness S, Hancock JT, Neill SJ., Plant Physiol. 127(1), 2001
PMID: 11553744
Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria.
Newman MA, von Roepenack-Lahaye E, Parr A, Daniels MJ, Dow JM., Plant J. 29(4), 2002
PMID: 11846881
Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays.
Scheideler M, Schlaich NL, Fellenberg K, Beissbarth T, Hauser NC, Vingron M, Slusarenko AJ, Hoheisel JD., J. Biol. Chem. 277(12), 2001
PMID: 11748215
Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core.
Campbell GR, Reuhs BL, Walker GC., Proc. Natl. Acad. Sci. U.S.A. 99(6), 2002
PMID: 11904442
Flagellin perception: a paradigm for innate immunity.
Gomez-Gomez L, Boller T., Trends Plant Sci. 7(6), 2002
PMID: 12049921
Oxidative stress, antioxidants and stress tolerance.
Mittler R., Trends Plant Sci. 7(9), 2002
PMID: 12234732
Suppression of plant defence in rhizobia-legume symbiosis.
Mithofer A., Trends Plant Sci. 7(10), 2002
PMID: 12399178
A Sinorhizobium meliloti lipopolysaccharide mutant altered in cell surface sulfation.
Keating DH, Willits MG, Long SR., J. Bacteriol. 184(23), 2002
PMID: 12426356
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes.
Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M., Plant J. 37(6), 2004
PMID: 14996223
A Rhizobium leguminosarum lipopolysaccharide lipid-A mutant induces nitrogen-fixing nodules with delayed and defective bacteroid formation.
Vedam V, Haynes JG, Kannenberg EL, Carlson RW, Sherrier DJ., Mol. Plant Microbe Interact. 17(3), 2004
PMID: 15000395
Innate immunity in plants and animals: striking similarities and obvious differences.
Nurnberger T, Brunner F, Kemmerling B, Piater L., Immunol. Rev. 198(), 2004
PMID: 15199967
Regulation of calcium signalling and gene expression by glutathione.
Gomez LD, Noctor G, Knight MR, Foyer CH., J. Exp. Bot. 55(404), 2004
PMID: 15286141
Cell wall chemistry, morphogenesis, and taxonomy of fungi.
Bartnicki-Garcia S., Annu. Rev. Microbiol. 22(), 1968
PMID: 4879523
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 17220366
PubMed | Europe PMC

Suchen in

Google Scholar