Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol)

Budke C, Koop T (2006)
ChemPhysChem 7(12): 2601-2606.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The effects of poly(vinyl alcohol) (PVA) on the Ostwald ripening of polycrystalline ice samples are studied. At -6 degrees C, ice recrystallization in sucrose solutions is inhibited at PVA concentrations down to 0.005 mg mL(-1), with a recrystollization inhibition constant of 48.9 mL mg(-1). Ice growth-habit experiments reveal molecular recognition of the arrangement of water molecules in the ice by PVA molecules, and indicate that PVA molecules adsorb to the primary and secondary prism faces of hexagonal ice, lh. Based on these observations, together with an analysis of the O-atom pattern in ice and the conformation of OH groups in PVA, an adsorption model is proposed. We suggest that PVA segments adsorb to the primary and secondary prism faces of ice parallel to the c axis with a linear misfit parameter of only 2.7%, most likely via multiple hydrogen bonds. The proposed adsorption mechanism is discussed in the light of recent thermal hysteresis and scanning tunneling microscopy experiments.
Stichworte
adsorption; ice; molecular; recrystallization; recognition; crystal growth
Erscheinungsjahr
2006
Zeitschriftentitel
ChemPhysChem
Band
7
Ausgabe
12
Seite(n)
2601-2606
ISSN
1439-4235
Page URI
https://pub.uni-bielefeld.de/record/1595735

Zitieren

Budke C, Koop T. Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol). ChemPhysChem. 2006;7(12):2601-2606.
Budke, C., & Koop, T. (2006). Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol). ChemPhysChem, 7(12), 2601-2606. https://doi.org/10.1002/cphc.200600533
Budke, Carsten, and Koop, Thomas. 2006. “Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol)”. ChemPhysChem 7 (12): 2601-2606.
Budke, C., and Koop, T. (2006). Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol). ChemPhysChem 7, 2601-2606.
Budke, C., & Koop, T., 2006. Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol). ChemPhysChem, 7(12), p 2601-2606.
C. Budke and T. Koop, “Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol)”, ChemPhysChem, vol. 7, 2006, pp. 2601-2606.
Budke, C., Koop, T.: Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol). ChemPhysChem. 7, 2601-2606 (2006).
Budke, Carsten, and Koop, Thomas. “Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol)”. ChemPhysChem 7.12 (2006): 2601-2606.

27 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Complex Coacervate Core Micelles Containing Poly(vinyl alcohol) Inhibit Ice Recrystallization.
Sproncken CCM, Surís-Valls R, Cingil HE, Detrembleur C, Voets IK., Macromol Rapid Commun 39(17), 2018
PMID: 29635766
Ice Recrystallization Inhibiting Polymers Enable Glycerol-Free Cryopreservation of Microorganisms.
Hasan M, Fayter AER, Gibson MI., Biomacromolecules 19(8), 2018
PMID: 29932648
Boreal pollen contain ice-nucleating as well as ice-binding 'antifreeze' polysaccharides.
Dreischmeier K, Budke C, Wiehemeier L, Kottke T, Koop T., Sci Rep 7(), 2017
PMID: 28157236
Oxidized Quasi-Carbon Nitride Quantum Dots Inhibit Ice Growth.
Bai G, Song Z, Geng H, Gao D, Liu K, Wu S, Rao W, Guo L, Wang J., Adv Mater 29(28), 2017
PMID: 28513884
Polymer mimics of biomacromolecular antifreezes.
Biggs CI, Bailey TL, Ben Graham, Stubbs C, Fayter A, Gibson MI., Nat Commun 8(1), 2017
PMID: 29142216
Polyproline as a Minimal Antifreeze Protein Mimic That Enhances the Cryopreservation of Cell Monolayers.
Graham B, Bailey TL, Healey JRJ, Marcellini M, Deville S, Gibson MI., Angew Chem Int Ed Engl 56(50), 2017
PMID: 29044869
Ice-Binding Proteins and Their Function.
Bar Dolev M, Braslavsky I, Davies PL., Annu Rev Biochem 85(), 2016
PMID: 27145844
Enhanced non-vitreous cryopreservation of immortalized and primary cells by ice-growth inhibiting polymers.
Deller RC, Pessin JE, Vatish M, Mitchell DA, Gibson MI., Biomater Sci 4(7), 2016
PMID: 27152370
Surface stiffening and enhanced photoluminescence of ion implanted cellulose - polyvinyl alcohol - silica composite.
Shanthini GM, Sakthivel N, Menon R, Nabhiraj PY, Gómez-Tejedor JA, Meseguer-Dueñas JM, Gómez Ribelles JL, Krishna JBM, Kalkura SN., Carbohydr Polym 153(), 2016
PMID: 27561534
O-Aryl-Glycoside Ice Recrystallization Inhibitors as Novel Cryoprotectants: A Structure-Function Study.
Capicciotti CJ, Mancini RS, Turner TR, Koyama T, Alteen MG, Doshi M, Inada T, Acker JP, Ben RN., ACS Omega 1(4), 2016
PMID: 30023486
Inhibition of ice growth and recrystallization by zirconium acetate and zirconium acetate hydroxide.
Mizrahy O, Bar-Dolev M, Guy S, Braslavsky I., PLoS One 8(3), 2013
PMID: 23555701
Influence of sequential modifications and carbohydrate variations in synthetic AFGP analogues on conformation and antifreeze activity.
Nagel L, Budke C, Erdmann RS, Dreyer A, Wennemers H, Koop T, Sewald N., Chemistry 18(40), 2012
PMID: 22930587
Antifreeze glycopeptide diastereomers.
Nagel L, Budke C, Dreyer A, Koop T, Sewald N., Beilstein J Org Chem 8(), 2012
PMID: 23209499
Biomimetic peptoid oligomers as dual-action antifreeze agents.
Huang ML, Ehre D, Jiang Q, Hu C, Kirshenbaum K, Ward MD., Proc Natl Acad Sci U S A 109(49), 2012
PMID: 23169638
Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice.
Bayer-Giraldi M, Weikusat I, Besir H, Dieckmann G., Cryobiology 63(3), 2011
PMID: 21906587
Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies.
Heggemann C, Budke C, Schomburg B, Majer Z, Wissbrock M, Koop T, Sewald N., Amino Acids 38(1), 2010
PMID: 19165574
Inhibition of nucleation and growth of ice by poly(vinyl alcohol) in vitrification solution.
Wang HY, Inada T, Funakoshi K, Lu SS., Cryobiology 59(1), 2009
PMID: 19454281

46 References

Daten bereitgestellt von Europe PubMed Central.


Landfester, Macromolecules 32(), 1999
Water, temperature and life.
Franks F, Mathias SF, Hatley RH., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 326(1237), 1990
PMID: 1969646
Ice nucleation and antinucleation in nature.
Zachariassen KE, Kristiansen E., Cryobiology 41(4), 2000
PMID: 11222024
Fish antifreeze protein and the freezing and recrystallization of ice.
Knight CA, DeVries AL, Oolman LD., Nature 308(5956), 1984
PMID: 6700733
Antifreeze Proteins: Structures and Mechanisms of Function.
Yeh Y, Feeney RE., Chem. Rev. 96(2), 1996
PMID: 11848766
Structure and function of antifreeze proteins.
Davies PL, Baardsnes J, Kuiper MJ, Walker VK., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 357(1423), 2002
PMID: 12171656
Antifreeze proteins and their potential use in frozen foods.
Griffith M, Ewart KV., Biotechnol. Adv. 13(3), 1995
PMID: 14536093
'Antifreeze' glycoproteins from polar fish.
Harding MM, Anderberg PI, Haymet AD., Eur. J. Biochem. 270(7), 2003
PMID: 12653993

Tachibana, Angew. Chem. 116(), 2004
Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity.
Tachibana Y, Fletcher GL, Fujitani N, Tsuda S, Monde K, Nishimura S., Angew. Chem. Int. Ed. Engl. 43(7), 2004
PMID: 14767958
Nonequilibrium antifreeze peptides and the recrystallization of ice.
Knight CA, Wen D, Laursen RA., Cryobiology 32(1), 1995
PMID: 7697996
Control over the structure of ice and water by block copolymer additives.
Mastai Y, Rudloff J, Colfen H, Antonietti M., Chemphyschem 3(1), 2002
PMID: 12465484

Inada, Cryst. Growth Des. 3(), 2003

Inada, Chem. Eng. Sci. 61(), 2006

Inada, Chem. Phys. Lett. 394(), 2004
Relationship between ice recrystallisation rates and the glass transition in frozen sugar solutions
Ablett S, Clarke CJ, Izzard MJ, Martin DR., J. Sci. Food Agric. 82(15), 2002
PMID: IND44637741
Solute effects on ice recrystallization: an assessment technique.
Knight CA, Hallett J, DeVries AL., Cryobiology 25(1), 1988
PMID: 3349811

AUTHOR UNKNOWN, 0

Lozinsky, Russ. Chem. Rev. 67(), 1998

Damshkaln, J. Appl. Polym. Sci. 74(), 1999

Rault, Polymer 36(), 1995

Liu, J. Polym. Sci. Part B 33(), 1995

Young, J. Phys. Colloid Chem. 53(), 1949

AUTHOR UNKNOWN, 0

Blond, Carbohydr. Res. 298(), 1997

AUTHOR UNKNOWN, 2001
Molecular recognition and binding of thermal hysteresis proteins to ice.
Madura JD, Baran K, Wierzbicki A., J. Mol. Recognit. 13(2), 2000
PMID: 10822254
Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes.
Knight CA, Cheng CC, DeVries AL., Biophys. J. 59(2), 1991
PMID: 2009357

DeOliveira, J. Am. Chem. Soc. 119(), 1997

Weissbuch, Cryst. Growth Des. 3(), 2003

Volkmer, J. Mater. Chem. 14(), 2004

Röttger, Acta Crystallogr. Sect. B 50(), 1994
Dense ice in detail.
Klug DD., Nature 420(6917), 2002
PMID: 12490928
Formation and stability of cubic ice in water droplets.
Murray BJ, Bertram AK., Phys Chem Chem Phys 8(1), 2005
PMID: 16482260

Yokoyama, Colloid Polym. Sci. 264(), 1986

AUTHOR UNKNOWN, 0

Bunn, Nature 161(), 1948

Assender, Polymer 39(), 1998

Hobbs, 1974
A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins.
Li QZ, Yeh Y, Liu JJ, Feeney RE, Krishnan VV., J Chem Phys 124(20), 2006
PMID: 16774359

Lu, Int. J. Refrig. 25(), 2002
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 17109452
PubMed | Europe PMC

Suchen in

Google Scholar