Random walks along the streets and canals in compact cities: Spectral analysis, dynamical modularity, information, and statistical mechanics

Volchenkov D, Blanchard P (2007)
Physical Review E 75(2): 6104-6118.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Different models of random walks on the dual graphs of compact urban structures are considered. Analysis of access times between streets helps to detect the city modularity. The statistical mechanics approach to the ensembles of lazy random walkers is developed. The complexity of city modularity can be measured by an informationlike parameter which plays the role of an individual fingerprint of Genius loci. Global structural properties of a city can be characterized by the thermodynamic parameters calculated in the random walk problem.
Erscheinungsjahr
Zeitschriftentitel
Physical Review E
Band
75
Ausgabe
2
Seite(n)
6104-6118
ISSN
eISSN
PUB-ID

Zitieren

Volchenkov D, Blanchard P. Random walks along the streets and canals in compact cities: Spectral analysis, dynamical modularity, information, and statistical mechanics. Physical Review E. 2007;75(2):6104-6118.
Volchenkov, D., & Blanchard, P. (2007). Random walks along the streets and canals in compact cities: Spectral analysis, dynamical modularity, information, and statistical mechanics. Physical Review E, 75(2), 6104-6118. doi:10.1103/PhysRevE.75.026104
Volchenkov, D., and Blanchard, P. (2007). Random walks along the streets and canals in compact cities: Spectral analysis, dynamical modularity, information, and statistical mechanics. Physical Review E 75, 6104-6118.
Volchenkov, D., & Blanchard, P., 2007. Random walks along the streets and canals in compact cities: Spectral analysis, dynamical modularity, information, and statistical mechanics. Physical Review E, 75(2), p 6104-6118.
D. Volchenkov and P. Blanchard, “Random walks along the streets and canals in compact cities: Spectral analysis, dynamical modularity, information, and statistical mechanics”, Physical Review E, vol. 75, 2007, pp. 6104-6118.
Volchenkov, D., Blanchard, P.: Random walks along the streets and canals in compact cities: Spectral analysis, dynamical modularity, information, and statistical mechanics. Physical Review E. 75, 6104-6118 (2007).
Volchenkov, Dimitry, and Blanchard, Philippe. “Random walks along the streets and canals in compact cities: Spectral analysis, dynamical modularity, information, and statistical mechanics”. Physical Review E 75.2 (2007): 6104-6118.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

From complex structures to complex processes: percolation theory applied to the formation of a city.
Bitner A, Hołyst R, Fiałkowski M., Phys Rev E Stat Nonlin Soft Matter Phys 80(3 pt 2), 2009
PMID: 19905248

47 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 1969

AUTHOR UNKNOWN, 1971

AUTHOR UNKNOWN, 1983

AUTHOR UNKNOWN, 1984

AUTHOR UNKNOWN, 1996

AUTHOR UNKNOWN, bolyai soc math stud 2(), 1993

AUTHOR UNKNOWN, 1995

AUTHOR UNKNOWN, czech math j 23(), 1973

AUTHOR UNKNOWN, czech math j 25(), 1975

AUTHOR UNKNOWN, 1994

AUTHOR UNKNOWN, 1998

AUTHOR UNKNOWN, 1997

AUTHOR UNKNOWN, 1966

AUTHOR UNKNOWN, 1967

AUTHOR UNKNOWN, 0
Discrete nodal domain theorems
BrianDavies, Linear Algebra and its Applications 336(1-3), 2001
Community structure in social and biological networks.
Girvan M, Newman ME., Proc. Natl. Acad. Sci. U.S.A. 99(12), 2002
PMID: 12060727
Efficient behavior of small-world networks.
Latora V, Marchiori M., Phys. Rev. Lett. 87(19), 2001
PMID: 11690461
Spectra of "real-world" graphs: beyond the semicircle law.
Farkas IJ, Derenyi I, Barabasi AL, Vicsek T., Phys Rev E Stat Nonlin Soft Matter Phys 64(2 Pt 2), 2001
PMID: 11497741
Topological properties of citation and metabolic networks.
Bilke S, Peterson C., Phys Rev E Stat Nonlin Soft Matter Phys 64(3 Pt 2), 2001
PMID: 11580393
Networks in life: scaling properties and eigenvalue spectra
FARKAS, Physica A Statistical Mechanics and its Applications 314(1-4), 2002
Centrality in social networks conceptual clarification
Freeman, Social Networks 1(3), 1979
Assortative mixing in networks.
Newman ME., Phys. Rev. Lett. 89(20), 2002
PMID: 12443515
Modularity and extreme edges of the internet.
Eriksen KA, Simonsen I, Maslov S, Sneppen K., Phys. Rev. Lett. 90(14), 2003
PMID: 12731952
Properties of highly clustered networks.
Newman ME., Phys Rev E Stat Nonlin Soft Matter Phys 68(2 Pt 2), 2003
PMID: 14525063
Spectra of complex networks.
Dorogovtsev SN, Goltsev AV, Mendes JF, Samukhin AN., Phys Rev E Stat Nonlin Soft Matter Phys 68(4 Pt 2), 2003
PMID: 14683004
Topological analysis of urban street networks
Jiang, Environment and Planning B Planning and Design 31(1), 2004
Graph Laplacians, nodal domains, and hyperplane arrangements
BIYIKOLU, Linear Algebra and its Applications 390(), 2004
Efficiency and robustness in ant networks of galleries
Buhl, The European Physical Journal B 42(1), 2004
Networks and cities: an information perspective.
Rosvall M, Trusina A, Minnhagen P, Sneppen K., Phys. Rev. Lett. 94(2), 2005
PMID: 15698238
Vulnerability and protection of infrastructure networks.
Latora V, Marchiori M., Phys Rev E Stat Nonlin Soft Matter Phys 71(1 Pt 2), 2005
PMID: 15697641
Spatiotemporal analysis of complex signals: Theory and applications
Aubry, Journal of Statistical Physics 64(3-4), 1991
Does AS size determine degree in as topology?
Tangmunarunkit, ACM SIGCOMM Computer Communication Review 31(5), 2001
Collisions Among Random Walks on a Graph
Coppersmith, SIAM Journal on Discrete Mathematics 6(3), 1993
Efficiency of informational transfer in regular and complex networks.
Vragovic I, Louis E, Diaz-Guilera A., Phys Rev E Stat Nonlin Soft Matter Phys 71(3 Pt 2A), 2005
PMID: 15903508
Subgraph centrality in complex networks.
Estrada E, Rodriguez-Velazquez JA., Phys Rev E Stat Nonlin Soft Matter Phys 71(5 Pt 2), 2005
PMID: 16089598
A graph theory interpretation of nodal regions
Nystuen, Papers of the Regional Science Association 7(1), 1961
The Structure and Function of Complex Networks
Newman, SIAM Review 45(2), 2003
Spectral measures of bipartivity in complex networks.
Estrada E, Rodriguez-Velazquez JA., Phys Rev E Stat Nonlin Soft Matter Phys 72(4 Pt 2), 2005
PMID: 16383466
The centrality of a graph.
Sabidussi G., Psychometrika 31(4), 1966
PMID: 5232444
The backbone of a city
Scellato, The European Physical Journal B 50(1-2), 2006
Vertex similarity in networks.
Leicht EA, Holme P, Newman ME., Phys Rev E Stat Nonlin Soft Matter Phys 73(2 Pt 2), 2006
PMID: 16605411
The network analysis of urban streets: A dual approach
PORTA, Physica A Statistical Mechanics and its Applications 369(2), 2006
Centrality measures in spatial networks of urban streets.
Crucitti P, Latora V, Porta S., Phys Rev E Stat Nonlin Soft Matter Phys 73(3 Pt 2), 2006
PMID: 16605616
Centrality in networks of urban streets.
Crucitti P, Latora V, Porta S., Chaos 16(1), 2006
PMID: 16599779
Structural properties of planar graphs of urban street patterns.
Cardillo A, Scellato S, Latora V, Porta S., Phys Rev E Stat Nonlin Soft Matter Phys 73(6 Pt 2), 2006
PMID: 16906914
Classification of art into style periods; a factor-analytical approach.
Ruth JE, Kolehmainen K., Scand J Psychol 15(4), 1974
PMID: 4141794

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 17358391
PubMed | Europe PMC

Suchen in

Google Scholar