Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2

Maskos K, Lang R, Tschesche H, Bode W (2007)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Maskos, K.; Lang, R.; Tschesche, HaraldUniBi; Bode, W.
Abstract / Bemerkung
The excessive activity of matrix metalloproteinases (MMPs) contributes to pathological processes such as arthritis, tumor growth and metastasis if not balanced by the tissue inhibitors of metalloproteinases (TIMPs). In arthritis, the destruction of fibrillar (type 11) collagen is one of the hallmarks, with MMP-1 (collagenase-1) and NIW-13 (collagenase-3) being identified as key players in arthritic cartilage. MMP-13, furthermore, has been found in highly metastatic tumors. We have solved the 2.0 angstrom crystal structure of the complex between the catalytic domain of human MMP-13 (cdMMP-13) and bovine TIMP-2. The overall structure resembles our previously determined MT1-MMP/TIMP-2 complex, in that the wedge-shaped TIMP-2 inserts with its edge into the entire MMP-13 active site cleft. However, the inhibitor is, according to a relative rotation of similar to 20 degrees, oriented differently relative to the proteinase. Upon TIMP binding, the catalytic zinc, the zinc-ligating side chains, the enclosing MMP loop and the S1' wall-forming segment move significantly and in concert relative to the rest of the cognate MMP, and the active site cleft constricts slightly, probably allowing a more favourable interaction between the Cys1(TIMP) alpha-amino group of the inhibitor and the catalytic zinc ion of the enzyme. Thus, this structure supports the view that the central N-terminal TIMP segment essentially defines the relative positioning of the TIMP, while the flanking edge loops determine the relative orientation, depending on the individual target MMP. (c) 2006 Elsevier Ltd. All rights reserved.
matrix metalloproteinase/MMP; tissue inhibitor of; metalloproteinases/TIMP; complex; collagenase; flexibility
Page URI


Maskos K, Lang R, Tschesche H, Bode W. Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2. JOURNAL OF MOLECULAR BIOLOGY. 2007;366(4):1222-1231.
Maskos, K., Lang, R., Tschesche, H., & Bode, W. (2007). Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2. JOURNAL OF MOLECULAR BIOLOGY, 366(4), 1222-1231. https://doi.org/10.1016/j.jmb.2006.11.072
Maskos, K., Lang, R., Tschesche, Harald, and Bode, W. 2007. “Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2”. JOURNAL OF MOLECULAR BIOLOGY 366 (4): 1222-1231.
Maskos, K., Lang, R., Tschesche, H., and Bode, W. (2007). Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2. JOURNAL OF MOLECULAR BIOLOGY 366, 1222-1231.
Maskos, K., et al., 2007. Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2. JOURNAL OF MOLECULAR BIOLOGY, 366(4), p 1222-1231.
K. Maskos, et al., “Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2”, JOURNAL OF MOLECULAR BIOLOGY, vol. 366, 2007, pp. 1222-1231.
Maskos, K., Lang, R., Tschesche, H., Bode, W.: Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2. JOURNAL OF MOLECULAR BIOLOGY. 366, 1222-1231 (2007).
Maskos, K., Lang, R., Tschesche, Harald, and Bode, W. “Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2”. JOURNAL OF MOLECULAR BIOLOGY 366.4 (2007): 1222-1231.

33 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Rare Variants in Tissue Inhibitor of Metalloproteinase 2 as a Risk Factor for Schizophrenia: Evidence From Familial and Cohort Analysis.
John J, Sharma A, Kukshal P, Bhatia T, Nimgaonkar VL, Deshpande SN, Thelma BK., Schizophr Bull 45(1), 2019
PMID: 29385606
Converting a broad matrix metalloproteinase family inhibitor into a specific inhibitor of MMP-9 and MMP-14.
Shirian J, Arkadash V, Cohen I, Sapir T, Radisky ES, Papo N, Shifman JM., FEBS Lett 592(7), 2018
PMID: 29473954
Development of High Affinity and High Specificity Inhibitors of Matrix Metalloproteinase 14 through Computational Design and Directed Evolution.
Arkadash V, Yosef G, Shirian J, Cohen I, Horev Y, Grossman M, Sagi I, Radisky ES, Shifman JM, Papo N., J Biol Chem 292(8), 2017
PMID: 28087697
Therapeutic Potential of Matrix Metalloproteinase Inhibition in Breast Cancer.
Radisky ES, Raeeszadeh-Sarmazdeh M, Radisky DC., J Cell Biochem 118(11), 2017
PMID: 28585723
Weak conservation of structural features in the interfaces of homologous transient protein-protein complexes.
Sudha G, Singh P, Swapna LS, Srinivasan N., Protein Sci 24(11), 2015
PMID: 26311309
A peptide derived from TIMP-3 inhibits multiple angiogenic growth factor receptors and tumour growth and inflammatory arthritis in mice.
Chen YY, Brown NJ, Jones R, Lewis CE, Mujamammi AH, Muthana M, Seed MP, Barker MD., Angiogenesis 17(1), 2014
PMID: 24129822
Affinity- and specificity-enhancing mutations are frequent in multispecific interactions between TIMP2 and MMPs.
Sharabi O, Shirian J, Grossman M, Lebendiker M, Sagi I, Shifman J., PLoS One 9(4), 2014
PMID: 24710006
Histological, histochemical, and protein changes after induced malocclusion by occlusion alteration of Wistar rats.
Guerra Cde S, Carla Lara Pereira Y, Issa JP, Luiz KG, Guimarães EA, Gerlach RF, Iyomasa MM., Biomed Res Int 2014(), 2014
PMID: 25028660
Ambidextrous binding of cell and membrane bilayers by soluble matrix metalloproteinase-12.
Koppisetti RK, Fulcher YG, Jurkevich A, Prior SH, Xu J, Lenoir M, Overduin M, Van Doren SR., Nat Commun 5(), 2014
PMID: 25412686
Grafting of functional motifs onto protein scaffolds identified by PDB screening--an efficient route to design optimizable protein binders.
Tlatli R, Nozach H, Collet G, Beau F, Vera L, Stura E, Dive V, Cuniasse P., FEBS J 280(1), 2013
PMID: 23121732
Potential clinical applications of matrix metalloproteinase inhibitors and their future prospects.
Li W, Saji S, Sato F, Noda M, Toi M., Int J Biol Markers 28(2), 2013
PMID: 23787494
TIMP-2: An Endogenous Angiogenesis Inhibitor with Distinct Antitumoral Properties.
Bourboulia D, Jensen-Taubman S, Stetler-Stevenson WG., Treat Strategies Hematol 2(1), 2012
PMID: 31380106
Dynamic interdomain interactions contribute to the inhibition of matrix metalloproteinases by tissue inhibitors of metalloproteinases.
Remacle AG, Shiryaev SA, Radichev IA, Rozanov DV, Stec B, Strongin AY., J Biol Chem 286(23), 2011
PMID: 21518756
Endogenous angiogenesis inhibitor blocks tumor growth via direct and indirect effects on tumor microenvironment.
Bourboulia D, Jensen-Taubman S, Rittler MR, Han HY, Chatterjee T, Wei B, Stetler-Stevenson WG., Am J Pathol 179(5), 2011
PMID: 21933655
Mechanisms of macromolecular protease inhibitors.
Farady CJ, Craik CS., Chembiochem 11(17), 2010
PMID: 21053238
Structure of an Fab-protease complex reveals a highly specific non-canonical mechanism of inhibition.
Farady CJ, Egea PF, Schneider EL, Darragh MR, Craik CS., J Mol Biol 380(2), 2008
PMID: 18514224
Structural determinants of the ADAM inhibition by TIMP-3: crystal structure of the TACE-N-TIMP-3 complex.
Wisniewska M, Goettig P, Maskos K, Belouski E, Winters D, Hecht R, Black R, Bode W., J Mol Biol 381(5), 2008
PMID: 18638486
Inactivation of N-TIMP-1 by N-terminal acetylation when expressed in bacteria.
Van Doren SR, Wei S, Gao G, DaGue BB, Palmier MO, Bahudhanapati H, Brew K., Biopolymers 89(11), 2008
PMID: 18615493
Tissue inhibitor of metalloproteinases-4. The road less traveled.
Melendez-Zajgla J, Del Pozo L, Ceballos G, Maldonado V., Mol Cancer 7(), 2008
PMID: 19025595
Simultaneous presence of unsaturation and long alkyl chain at P'1 of Ilomastat confers selectivity for gelatinase A (MMP-2) over gelatinase B (MMP-9) inhibition as shown by molecular modelling studies.
Moroy G, Denhez C, El Mourabit H, Toribio A, Dassonville A, Decarme M, Renault JH, Mirand C, Bellon G, Sapi J, Alix AJ, Hornebeck W, Bourguet E., Bioorg Med Chem 15(14), 2007
PMID: 17512742
Engineered sarafotoxins as tissue inhibitor of metalloproteinases-like matrix metalloproteinase inhibitors.
Lauer-Fields JL, Cudic M, Wei S, Mari F, Fields GB, Brew K., J Biol Chem 282(37), 2007
PMID: 17626018
Constraining specificity in the N-domain of tissue inhibitor of metalloproteinases-1; gelatinase-selective inhibitors.
Hamze AB, Wei S, Bahudhanapati H, Kota S, Acharya KR, Brew K., Protein Sci 16(9), 2007
PMID: 17660250

55 References

Daten bereitgestellt von Europe PubMed Central.

Matrix metalloproteinases: a tail of a frog that became a prince.
Brinckerhoff CE, Matrisian LM., Nat. Rev. Mol. Cell Biol. 3(3), 2002
PMID: 11994741
Structure and function of matrix metalloproteinases and TIMPs.
Nagase H, Visse R, Murphy G., Cardiovasc. Res. 69(3), 2006
PMID: 16405877
Tissue inhibitors of metalloproteinases: evolution, structure and function.
Brew K, Dinakarpandian D, Nagase H., Biochim. Biophys. Acta 1477(1-2), 2000
PMID: 10708863
Regulation of matrix biology by matrix metalloproteinases.
Mott JD, Werb Z., Curr. Opin. Cell Biol. 16(5), 2004
PMID: 15363807
Proteolysis of the collagen fibril in osteoarthritis
Poole, Biochem. Soc. Symp. 70(), 2003
Biochemical characterization of human collagenase-3.
Knauper V, Lopez-Otin C, Smith B, Knight G, Murphy G., J. Biol. Chem. 271(3), 1996
PMID: 8576151
An overview of collagenase-3 expression in malignant tumors and analysis of its potential value as a target in antitumor therapies.
Pendas AM, Uria JA, Jimenez MG, Balbin M, Freije JP, Lopez-Otin C., Clin. Chim. Acta 291(2), 2000
PMID: 10675720
Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas.
Freije JM, Diez-Itza I, Balbin M, Sanchez LM, Blasco R, Tolivia J, Lopez-Otin C., J. Biol. Chem. 269(24), 1994
PMID: 8207000
Expression of collagenase-3 (MMP-13) enhances invasion of human fibrosarcoma HT-1080 cells.
Ala-Aho R, Johansson N, Baker AH, Kahari VM., Int. J. Cancer 97(3), 2002
PMID: 11774278
Expression profiling of metalloproteinases and their inhibitors in cartilage.
Kevorkian L, Young DA, Darrah C, Donell ST, Shepstone L, Porter S, Brockbank SM, Edwards DR, Parker AE, Clark IM., Arthritis Rheum. 50(1), 2004
PMID: 14730609
Targeted inhibition of human collagenase-3 (MMP-13) expression inhibits squamous cell carcinoma growth in vivo.
Ala-aho R, Ahonen M, George SJ, Heikkila J, Grenman R, Kallajoki M, Kahari VM., Oncogene 23(30), 2004
PMID: 15094779
Collagenases in cancer.
Ala-aho R, Kahari VM., Biochimie 87(3-4), 2005
PMID: 15781314
Structural basis for the highly selective inhibition of MMP-13.
Engel CK, Pirard B, Schimanski S, Kirsch R, Habermann J, Klingler O, Schlotte V, Weithmann KU, Wendt KU., Chem. Biol. 12(2), 2005
PMID: 15734645
Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1.
Gomis-Ruth FX, Maskos K, Betz M, Bergner A, Huber R, Suzuki K, Yoshida N, Nagase H, Brew K, Bourenkov GP, Bartunik H, Bode W., Nature 389(6646), 1997
PMID: 9288970
Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor.
Fernandez-Catalan C, Bode W, Huber R, Turk D, Calvete JJ, Lichte A, Tschesche H, Maskos K., EMBO J. 17(17), 1998
PMID: 9724659
Crystal structures of MMP-1 and -13 reveal the structural basis for selectivity of collagenase inhibitors.
Lovejoy B, Welch AR, Carr S, Luong C, Broka C, Hendricks RT, Campbell JA, Walker KA, Martin R, Van Wart H, Browner MF., Nat. Struct. Biol. 6(3), 1999
PMID: 10074939
Structure of recombinant mouse collagenase-3 (MMP-13).
Botos I, Meyer E, Swanson SM, Lemaitre V, Eeckhout Y, Meyer EF., J. Mol. Biol. 292(4), 1999
PMID: 10525409
High-resolution solution structure of the catalytic fragment of human collagenase-3 (MMP-13) complexed with a hydroxamic acid inhibitor.
Moy FJ, Chanda PK, Chen JM, Cosmi S, Edris W, Levin JI, Powers R., J. Mol. Biol. 302(3), 2000
PMID: 10986126
Structural implications for the role of the N terminus in the 'superactivation' of collagenases. A crystallographic study.
Reinemer P, Grams F, Huber R, Kleine T, Schnierer S, Piper M, Tschesche H, Bode W., FEBS Lett. 338(2), 1994
PMID: 8307185
Activation mechanisms of matrix metalloproteinases.
Nagase H., Biol. Chem. 378(3-4), 1997
PMID: 9165065
X-ray structure of human proMMP-1: new insights into procollagenase activation and collagen binding.
Jozic D, Bourenkov G, Lim NH, Visse R, Nagase H, Bode W, Maskos K., J. Biol. Chem. 280(10), 2004
PMID: 15611040
Identification of the (183)RWTNNFREY(191) region as a critical segment of matrix metalloproteinase 1 for the expression of collagenolytic activity.
Chung L, Shimokawa K, Dinakarpandian D, Grams F, Fields GB, Nagase H., J. Biol. Chem. 275(38), 2000
PMID: 10871619
Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis.
Chung L, Dinakarpandian D, Yoshida N, Lauer-Fields JL, Fields GB, Visse R, Nagase H., EMBO J. 23(15), 2004
PMID: 15257288
The TIMP2 membrane type 1 metalloproteinase "receptor" regulates the concentration and efficient activation of progelatinase A. A kinetic study.
Butler GS, Butler MJ, Atkinson SJ, Will H, Tamura T, Schade van Westrum S, Crabbe T, Clements J, d'Ortho MP, Murphy G., J. Biol. Chem. 273(2), 1998
PMID: 9422744
Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2.
Morgunova E, Tuuttila A, Bergmann U, Tryggvason K., Proc. Natl. Acad. Sci. U.S.A. 99(11), 2002
PMID: 12032297
Three-dimensional structure of human tissue inhibitor of metalloproteinases-2 at 2.1 A resolution.
Tuuttila A, Morgunova E, Bergmann U, Lindqvist Y, Maskos K, Fernandez-Catalan C, Bode W, Tryggvason K, Schneider G., J. Mol. Biol. 284(4), 1998
PMID: 9837731
A procedure for the large-scale isolation of major bovine seminal plasma proteins.
Calvete JJ, Varela PF, Sanz L, Romero A, Mann K, Topfer-Petersen E., Protein Expr. Purif. 8(1), 1996
PMID: 8812834
[20] Processing of X-ray diffraction data collected in oscillation mode.
Otwinowski Z, Minor W., Meth. Enzymol. 276(), 1997
PMID: 27799103
AMoRe: an automated package for molecular replacement
Navaza, Acta Crystallog. sect. A 50(), 1994

Brünger, 1992
Accurate bond and angle parameters for X-ray protein-structure refinement
Engh, Acta Crystallog. sect. A 47(), 1991
Crystallography & NMR system: A new software suite for macromolecular structure determination.
Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL., Acta Crystallogr. D Biol. Crystallogr. 54(Pt 5), 1998
PMID: 9757107
Improved methods for building protein models in electron density maps and the location of errors in these models.
Jones TA, Zou JY, Cowan SW, Kjeldgaard M., Acta Crystallogr., A, Found. Crystallogr. 47 ( Pt 2)(), 1991
PMID: 2025413

The CCP4 suite: programs for protein crystallography.
Collaborative Computational Project, Number 4., Acta Crystallogr. D Biol. Crystallogr. 50(Pt 5), 1994
PMID: 15299374
PROCHECK: a program to check the stereochemical quality of protein structures.
Laskowski RA, MacArthur MW, Moss DS, Thornton JM., J Appl Crystallogr 26(2), 1993
PMID: c6802

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 17196980
PubMed | Europe PMC

Suchen in

Google Scholar